Troponin: Structure, Function and Dysfunction

  • Iwao Ohtsuki
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)


A Ca2+-sensitizing protein factor first isolated from minced muscle showed some similarity to the previously found tropomyosin in amino acid composition and was thus considered to be a native form of tropomyosin (Bailey, 1946; 1948; Ebashi, 1963; Ebashi and Ebashi, 1964). In 1965, however, a new protein was found in this protein factor in addition to tropomyosin and named troponin (Ebashi and Kodama, 1965). The discovery of troponin triggered a new era of the molecular biology of the regulation of muscle contraction. Troponin was shown to be the Ca2+-receptive protein for the Ca2+-sensitive contraction in striated muscle. In the absence of Ca2+, troponin in association with tropomyosin suppresses the contractile interaction between myosin and actin, and this suppression is removed by an action of Ca2+ on troponin to activate the contraction (Ebashi et al., 1968). An electron microscopic study revealed that troponin is distributed along the thin filament at regular intervals of about 40 nm, and this finding led to the construction of a model of thin filament as an ordered assembly of troponin, tropomyosin and actin (Ohtsuki et al., 1967; Ebashi et al., 1969). By these studies, the molecular basis of the Ca2+ -regulation of muscle contraction was established.


Force Generation Cardiac Troponin Inhibitory Region Rabbit Skeletal Muscle Troponin Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.7. References

  1. Ahmad, F., Seidman, J. G., and Seidman, C. E., 2005, The genetic basis for cardiac remodeling, Annu. Rev. Genomics Hum. Genet. 6:185–216.PubMedCrossRefGoogle Scholar
  2. Bailey, K., 1946, Tropomyosin: a new asymmetric protein component of muscle, Nature (London) 157:368–369.Google Scholar
  3. Bailey, K., 1948, Tropomyosin: a new asymmetric protein component of the muscle fibril, Biochem. J. 43:271–279.PubMedGoogle Scholar
  4. Ebashi, S., 1963, Third component participating in the superprecipitation of “natural actomyosin”, Nature (London), 200:1010.CrossRefGoogle Scholar
  5. Ebashi, S., 1972, Troponin and its components, J. Biochem. 72:787–790.PubMedGoogle Scholar
  6. Ebashi, S., 1974, Regulatory mechanism of muscle contraction with special reference to the Ca-troponin-tropomyosin system, Essays Biochem. 10:1–36.PubMedGoogle Scholar
  7. Ebashi, S., and Ebashi. F., 1964, A new protein component participating in the superprecipitation of myosin B, J. Biochem. 55:604–613.PubMedGoogle Scholar
  8. Ebashi, S., Endo, M., and Ohtsuki, I., 1969, Control of muscle contraction, Q. Rev. Biophys. 2:351–384.PubMedCrossRefGoogle Scholar
  9. Ebashi, S., and Kodama, A., 1965, A new protein factor promoting aggregation of tropomyosin, J. Biochem. 58:107–108.PubMedGoogle Scholar
  10. Ebashi, S., Kodama, A., and Ebashi, F., 1968, Troponin 1. Preparation and physiological function, J. Biochem. 64:465–477.PubMedGoogle Scholar
  11. Fatkin, D., and Graham, R. M. 2002, Molecular mechanism of inherited cardiomyopathies, Physiol. Rev. 82:945–980.PubMedGoogle Scholar
  12. Gomes, A. V., Harada, K., and Potter, J. D., 2005, A mutation in the N-terminal of troponin I that is associated with hypertrophic cardiomyopathy affects the Ca2+-sensitivity, phosphorylation kinetics and proteolytic susceptibility of troponin. J. Mol. Cell. Cardiol. 39:754–765.PubMedCrossRefGoogle Scholar
  13. Greaser, M. L., and Gergely, J., 1971, Reconstitution of troponin activity from three protein components, J. Biol. Chem. 246:4226–4233.PubMedGoogle Scholar
  14. Harada, K., and Potter, J. D., 2004, Familial hypertrophic cardiomyopathy mutations from different functional regions of troponin T result in different effects on the pH-and Ca2+-sensitivity of cardiac muscle contraction. J. Biol. Chem. 279:14488–14495.PubMedCrossRefGoogle Scholar
  15. Hartshorne, D. J., and Mueller, H., 1968, Fractionation of troponin into two distinct proteins, Biochem. Biophys. Res. Commun. 31:647–653.PubMedCrossRefGoogle Scholar
  16. Hatakenaka, M., and Ohtsuki, I., 1991, Replacement of three troponin components with cardiac troponin components within single glycerinated skeletal muscle fibers, Biochem. Biophys. Res. Commun. 181:1022–1027.PubMedCrossRefGoogle Scholar
  17. Hatakenaka, M., and Ohtsuki, I., 1992, Effect of removal and reconstitution of troponins C and I on the Ca2+-activated tension development of single glycerinated rabbit skeletal muscle fibers, Eur. J. Biochem. 205:985–993.PubMedCrossRefGoogle Scholar
  18. Hinkle, A., and Tobacman, L. S., 2003, Folding and function of troponin tail domain. Effects of cardiomyopathic troponin T mutations, J. Biol. Chem. 278:506–513.PubMedCrossRefGoogle Scholar
  19. Hoffman, B., Schmidt-Traub, H., Perrot, A., Osterziel, K. J., and Gessner R., 2001, First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy, Hum. Mutat. 17:524.CrossRefGoogle Scholar
  20. Jackson, P., Amphlett, G. W., and Perry, S. V. 1975, The primary structure of troponin T and the interaction with tropomyosin, Biochem. J. 151:85–97.PubMedGoogle Scholar
  21. Kamisago, M., Sharma, S. D., DePelma, S. R., Solomon, S., Sharma, P., McDonough, B., Smool, L., Mullen, M. P., Woolf, P. K., Wigle, E. D., and Seidman, C. E., 2000, Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy, N. Engl. J. Med. 343:1688–1696.PubMedCrossRefGoogle Scholar
  22. Kimura, A., Hara, H., Park, J. E., Nishi, H., Satoh, M., Takahashi, M., Hiroi, S., Sasaoka, T., Ohbuchi, N., Nakamura, T., Koyanagi, T., Hwang, T. H., Choo, J. A., Chung, K. S., Hasegawa, A., Nagai, R., Okazaki, O., Nakamura, H., Matsuzaki, M., Sakamoto, T., Toshima, H., Koga, Y., Imaizumi, Y., and Sasazuki, T., 1997, Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy, Nat. Genet. 16:379–382.PubMedCrossRefGoogle Scholar
  23. Knollman, B. C., Kirchhof, P., Sirenko, S. G., Degan, H., Greene, A. E., Schober, T., Mackow, J. C., Fabritz, L., Potter, J. D., and Morad, M., 2003, Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling, Circ. Res. 92:428–436.CrossRefGoogle Scholar
  24. Knollman, B. C., and Potter, J. D., 2001, Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy, Trends Cardiovasc. Med. 11:206–212.CrossRefGoogle Scholar
  25. Li, D., Czernuszewicz G. Z., Gonzalez, O., Tapscott, T., Karibe, A., Durand, J. B., Brugada, R., Hill, R., Gregoritch, J. M., Anderson, J. L., Quinones M., Bachinski, L. L., and Roberts, R., 2001, Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy, Circulation 104:2188–2193.PubMedGoogle Scholar
  26. Lu, Q-W., Morimoto, S., Harada, K., Du, C-K., Takahashi-Yanaga, F., Miwa, Y., Sasaguri, T., and Ohtsuki, I., 2003, Cardiac troponin T mutation found in dilated cardiomyopathy stabilizes the troponin T-tropomyosin interaction and causes Ca2+ desensitization, J. Mol. Cell. Cardiol. 35:1421–1427.PubMedCrossRefGoogle Scholar
  27. Mirza, M., Marston, S., Willott, R., Ashley, C., Mogensen, J., McKenna, W., Robinson, P., Redwood, C., and Watkins, H., 2005, Dilated cardiomyopathy mutations in three thin filament regulatory proteins results in a common functional phenotype, J. Biol. Chem. 280:28498–28506.PubMedCrossRefGoogle Scholar
  28. Mogensen, J., Kubo, T., Duque, M., Uribe, W., Shaw, A., Murphy, R., Gimeno, J. R., Elliott, P., and Mckenna, W. J., 2003a, Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations, J. Clin. Invest. 111:209–216.PubMedCrossRefGoogle Scholar
  29. Mogensen, J., Murphy, R. T., Shaw, A., Bahl, A., Elliott, P. M., and McKenna, W. J., 2003b, Cardiac troponin C, and T mutations in 238 patients with idiopathic dilated cardiomyopathy; Prevalence, clinical features and impact on the troponin complex, Circulation 108:IV-50.Google Scholar
  30. Morimoto, S., Du, C.-K., Ohta, M., Lu, Q.-W., Harada, K., Nishii, K., Yamamura, K., and Ohtsuki, I., 2005, A knock-in mouse model for familial dilated cardiomyopathy caused by the mutation ΔK210 in cardiac troponin I, Biophys. J. 88(1):Part 2.480a.Google Scholar
  31. Morimoto, S., Lu, Q-W., Harada, K., Takahashi-Yanaga, F., Minakami, R., Ohta, M., Sasaguri, T., and Ohtsuki, I., 2002, Ca2+ desensitizing effect of a deletion mutation delta-K210 in cardiac troponin T that causes familial dilated cardiomyopathy, Proc. Natl. Acad. Sci. USA 99:913–918.PubMedCrossRefGoogle Scholar
  32. Morimoto, S., Nakaura, H., Yanaga, F., and Ohtsuki, I., 1999, Functional consequences of a carboxy terminal missense mutation Arg278Cys in human cardiac troponin T, Biochem. Biophys. Res. Commun. 261:79–82.PubMedCrossRefGoogle Scholar
  33. Morimoto, S., Yanaga, F., Minakami, R., and Ohtsuki, I., 1998, Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy, Am. J. Physiol. 275:C200–C207.PubMedGoogle Scholar
  34. Nagano, K., and Ohtsuki, I., 1982, Prediction of approximate quaternary structure of troponin complex, Proc. Japan Acad. 58 (Ser.B):73–77.Google Scholar
  35. Nakaura, H., Morimoto, S., Yanaga, F., Nakata, M., Nishi, N., Imaizumi, Y., and Ohtsuki, I., 1999a, Functional changes in troponin T by a splice donor site mutation that causes hypertrophic crdiomyopathy, Am. J. Physiol. 277, C225–C232.PubMedGoogle Scholar
  36. Nakaura, H., Yanaga, F., Ohtsuki, I., and Morimoto, S., 1999b, Effects of missense mutations Phe110Ile and Glu244Asp in human cardiac troponin T on force generation in skinned cardiac muscle fibers, J. Biochem. 126:457–460.PubMedGoogle Scholar
  37. Ohtsuki, I., 1974, Localization of troponin in thin filament and tropomyosin paracrystal, J. Biochem. 75:753–765.Google Scholar
  38. Ohtsuki, I., 1975, Distribution of troponin components in the thin filament studied by immunoelectron microscopy, J. Biochem. 77:633–639.Google Scholar
  39. Ohtsuki, I., 1979, Molecular arrangement of troponin T in thin filament, J. Biochem. 86:491–497.PubMedGoogle Scholar
  40. Ohtsuki, I. 1980, Functional organization the troponin-tropomyosin system, in: Muscle Contraction; Its Regulatory Mechanisms, S. Ebashi, K. Maruyama, M. Endo, eds, Jpn Sci. Soc. Press, Tokyo, Springer-Verlag, Berlin, Heidelbeng, New York, pp. 237–250.Google Scholar
  41. Ohtsuki, I., Maruyama, K, and Ebashi, S., 1986, Regulatory and cytoskeletal proteins of vertebrate skeletal muscle, Adv. Protein Chem. 38:1–68.PubMedCrossRefGoogle Scholar
  42. Ohtsuki I., Masaki, T., Nonomura, Y, and Ebashi, S. 1967, Periodic distribution of troponin along thin filament, J. Biochem. 81:817–819.Google Scholar
  43. Ohtsuki, I., Onoyama, Y., and Shiraishi, F., 1988, Electron microscopic study of troponin, J. Biochem. 103: 913–919.PubMedGoogle Scholar
  44. Ohtsuki, I., and Shiraishi, F., 2002, Periodic binding of troponin C·I and troponin I to tropomyosin-actin filaments, J. Biochem. 131:739–743.PubMedGoogle Scholar
  45. Ohtsuki, I., Shiraishi, F., Suenaga, N., Miyata, T., and Tanokura, M., 1984, 26K fragment of troponin T from rabbit skeletal muscle, J. Biochem. 95:1337–1342.PubMedGoogle Scholar
  46. Ohtsuki, I., Yamamoto, K., and Hashimoto, K., 1981, Effect of two C-terminal side chymotryptic subfragments on the Ca2+ sensitivity of superprecipitation and ATPase activities of actomyosin, J. Biochem. 90: 259–261.PubMedGoogle Scholar
  47. Oliveira, D. M., Nakaie, C. R., Sousa, A. D., Farah, C. S., and Reinach, C., 2000, Mapping the domain of troponin T responsible for the activation of actomyosin ATPase activity. Identification of residues involved in binding to actin, J. Biol. Chem. 275:27513–27519.PubMedCrossRefGoogle Scholar
  48. Ooi, T., Mihashi, K., and Kobayashi, H., 1962, On the polymerization of tropomyosin, Arch. Biochem. Biophys. 98:1–11.PubMedCrossRefGoogle Scholar
  49. Pan, B.-S., Gordon, A. M., and Potter, J. D., 1991, Deletion of the first 45 NH2-terminal residues of rabbit skeletal troponin T strengthens binding of troponin to immobilized tropomyosin, J. Biol. Chem. 266: 12432–12438.PubMedGoogle Scholar
  50. Pearlstone, J. R., Carpenter, M. R., Johnson, P., and Smillie, L. B., 1976, Amino-acid sequence of tropomyosin binding component of rabbit skeletal muscle troponin, Proc. Natl. Acad. Sci. USA 73: 1902–1906.PubMedCrossRefGoogle Scholar
  51. Perry, S. V., 1999, Troponin I: inhibitor or facilitator, Mol. Cell. Biochem. 190:9–32.PubMedCrossRefGoogle Scholar
  52. Preston, L., Lipscomb, S., Robinson, P., Watkins, H., Redwood, C., Mogensen, J., and Ashley, C., 2004, Mechanical effect of human cardiac troponin C mutation Gly159Asp in exchanged rabbit psoas fibers, Biophys. J. 86:396a.Google Scholar
  53. Rüegg, J. C., 1986, Calcium in Muscle Activation, Springer-Verlag, Berlin, Tokyo, pp. 165–200.Google Scholar
  54. Schaub, M. C., and Perry, S. V., 1969, The relaxing protein system of striated muscle, Biochem. J. 1155: 903–1004.Google Scholar
  55. Shiraishi, F., Morimoto, S., Nishita, K., Ojima, T., and Ohtsuki, I., 1999, Effects of removal and reconstitution of myosin regulatory light chain and troponin C on the Ca2+-sensitive ATPase activity of myofibrils from scallop striated muscle, J. Biochem. 126:1020–1024.PubMedGoogle Scholar
  56. Szczesna, D., Zhang, R., Zhao, J., Jones, M., Guzman, G., and Potter, J. D., 2000, Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy, J. Biol. Chem. 275:624–630.PubMedCrossRefGoogle Scholar
  57. Takahashi-Yanaga, F., Morimoto, S., Harada, K., Minakami, R., Shiraishi, F., Ohta, M., Lu, Q-W., Sasaguri, T., and Ohtsuki, I., 2001, Functional consequences of the mutations in human cardiac troponin I gene found in familial hypertrophic cardiomyopathy, J. Mol. Cell. Cardiol. 33:2095–2107.PubMedCrossRefGoogle Scholar
  58. Takeda, S., Yamashita, A., Maeda, K., and Maeda, Y., 2003, Structure of the core domain of human cardiac troponin in the Ca2+-saturated form, Nature, 424:35–41.PubMedCrossRefGoogle Scholar
  59. Tanaka, H., Takeya, Y., Doi, T., Yumoto, F., Tanokura, M., Ohtsuki, I., Nishita, K. and Ojima, T. 2005, Comparative studies on the functional roles of NH2-or COOH-terminal region of molluskan and vertebrate troponin-I, FEBS J. 272(17):4475–4486.PubMedCrossRefGoogle Scholar
  60. Tanokura, M., Tawada, Y., and Ohtsuki, I., 1982, Chymotryptic subfragments of troponin T from rabbit skeletal muscle. I. Determination of the primary structure, J. Biochem. 91:1257–1265.PubMedGoogle Scholar
  61. Tanokura, M., Tawada, Y., Ono, A., and Ohtsuki, I., 1983, Chymotryptic subfragments of troponin T from rabbit skeletal muscle. Interaction with tropomyosin, troponin I and troponin C, J. Biochem. 93: 331–337.PubMedGoogle Scholar
  62. Thierfelder, L., Watkins, H., MacRae, C., Lamas, R., McKenna, W., Vosberg, H. P., Seidman, J. G., and Seidman C. E., 1994, α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy, Cell, 77:701–712.PubMedCrossRefGoogle Scholar
  63. Tripet, B., Van Eyk, J. E., and Hodges, R. S., 1997, Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2+-dependent regulation of muscle contraction, J. Mol. Biol. 271:726–750.CrossRefGoogle Scholar
  64. Tsao, T.-C., Bailey, K., and Adair, G. S., 1951, The size, shape and aggregation of tropomyosin particles, Biochem. J. 49:27–36.PubMedGoogle Scholar
  65. Venkatraman, G., Harada, K., Gomes, A. V., Kerrick, W. G., and Potter, J. D., 2003, Different functional properties of troponin T mutants that cause dilated cardiomyopathy, J. Biol. Chem. 278:41670–41676.PubMedCrossRefGoogle Scholar
  66. Vinogradova, M. V., Stone, D. B., Malanina, G. G., Karatzaferi, C., Cooke, R., Mendelson, R. A., and Fletterick, R. J., 2005, Ca2+-regulated structural changes in troponin, Proc. Natl. Acad. Sci. USA, 102:5038–5043.PubMedCrossRefGoogle Scholar
  67. Yanaga, F., Morimoto, S., and Ohtsuki, I., 1999, Ca2+ sensitization and potentiation of the maximum level of myofibrillar ATPase activity caused by mutations of troponin T found in familial hypertrophic cardiomyopathy, J. Biol. Chem. 274:8806–8812.PubMedCrossRefGoogle Scholar
  68. Yumoto, F., Lu, Q-W., Morimoto, S., Tanaka, H., Kono, N., Ojima, T., Takahashi-Yanaga, F., Miwa, Y., Sasaguri, T., Nishita, K., Tanokura, M., and Ohtsuki, I., 2005, Drastic Ca2+sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy, Biochem. Biophys. Res. Commun. 338:1519–1526.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Iwao Ohtsuki
    • 1
  1. 1.Department of PhysiologyThe Jikei University School of MedicineTokyoJapan

Personalised recommendations