Evidence About the Structural Behaviour of Myosin Crossbridges During Muscle Contraction

  • Hugh E. Huxley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)


It has been a great honor and a particular pleasure to participate in this meeting to celebrate the fortieth anniversary of the discovery of troponin by Professor Ebashi, whom I have been privileged to know for many years of my scientific life. I thought therefore it would be appropriate to described briefly what was happening in studies of another aspect of muscle contraction over somewhat the same time period.


Myosin Head Contracting Muscle Myosin Molecule Heavy Meromyosin Attached Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

27.10. References

  1. Dobbie, I., Linari, M., Piazzesi, G., Reconditi, M., Koubassova, N., Ferenczi, M., Lombardi, V., and Irving, M., 1998, Elastic bending and active tilting of myosin leads during muscle contraction, Nature 396:383–387.PubMedCrossRefGoogle Scholar
  2. Dominguez, R., Freyzon, Y., Trybus, K. M., and Cohen, C., 1998, Crystal structure of vertebrate smooth muscle myosin motor domain: visualization of the pre-power stroke state, Cell 94:559–571.PubMedCrossRefGoogle Scholar
  3. Finer, J. T., Simmons, R. M., and Spudich, J. A., 1994, Single myosin molecule mechanics: piconewton forces and nanometer steps, Nature 368:113–119.PubMedCrossRefGoogle Scholar
  4. Geeves, M. A., and Holmes, K. C., 2005, The molecular mechanism of muscle contraction, Adv. Protein. Chem. 71:161–193.PubMedCrossRefGoogle Scholar
  5. Hanson, J., and Huxley, H. E., 1953, The structural basis of the cross-striation in muscle, Nature Lond. 172:530–532.PubMedCrossRefGoogle Scholar
  6. Holmes, K. C., Angert, I., Kull, J., Jahn W., and Schroeder, R. R. 2003, Electron cryomicroscopy shows how strong binding of myosin to actin releases nucleotide. Nature, Lond. 425:423–427.CrossRefGoogle Scholar
  7. Houdusse, A., Szent-Gyorgyi, A. G., and Cohen C., 2000, Three conformational states of scallop myosin S1, Proc. Natl. Acad. Sci. USA 97:11238–11243.PubMedCrossRefGoogle Scholar
  8. Huxley, A. F., 1957a, Muscle structure and theories of contraction, Prog. Biophys. and Biophys. Chem. 7:255–318.Google Scholar
  9. Huxley, A. F., and Niedergerke, R., 1954, Structural changes in muscle during contraction. Interference microscopy of living muscle fibres, Nature Lond. 173:971–973.PubMedCrossRefGoogle Scholar
  10. Huxley, A. F., and Simmons, R. M., 1971, Proposed mechanism of force generation in striated muscle, Nature, Lond. 233:533–538.CrossRefGoogle Scholar
  11. Huxley, H. E., 1951, Low-angle X-ray diffraction studies on muscle, Disc Faraday Soc. 11:148–149.Google Scholar
  12. Huxley, H. E., 1952, Investigations in biological structures by X-ray methods. The structure of muscle: Ph.D. Thesis, University of Cambridge.Google Scholar
  13. Huxley, H. E., 1953a, X-ray diffraction and the problem of muscle, Proc. Roy. Soc. B. 141:59.Google Scholar
  14. Huxley, H. E., 1953b, Electron-microscope studies of the organization of the filaments in striated muscle, Biochem. Biophys. Acta 12.Google Scholar
  15. Huxley, H. E., 1957b, The double array of filaments in cross-striated muscle, J. Biophys. Biochem. Ctyol. 3:631–648.CrossRefGoogle Scholar
  16. Huxley, H. E., 1963, Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol. 7:281–308.Google Scholar
  17. Huxley, H. E., 1969, The mechanism of muscle contraction, Science 164:1356–1366.Google Scholar
  18. Huxley, H. E., and Brown, W., 1967, The low angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor, J. Mol. Biol. 30:383–434.PubMedGoogle Scholar
  19. Huxley, H. E., and Hanson, J., 1954, Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation, Nature Lond. 173:4412:973–976.PubMedCrossRefGoogle Scholar
  20. Huxley, H. E., Simmons, R. M., Faruqi, A. R., Kress, M., Bordas, J., and Koch, M. H. J., 1981, Millisecond time-resolved changes in x-ray reflections from contracting muscle during rapid mechanical transients, recorded using synchrotron radiation, Proc. Nat. Acad. Sci. USA 78:2297–2301.PubMedCrossRefGoogle Scholar
  21. Huxley, H. E., Simmons, R. M., Faruqi, A. R., Kress, M., Bordas, J., and Koch, M. H. J., 1983, Changes in the x-ray reflections from contracting muscle during rapid mechanical transients and their structural implications, J. Mol. Biol. 169:469–506.PubMedCrossRefGoogle Scholar
  22. Huxley, H. E., Reconditi, M., Stewart, A., and Irving, T., 2000, Interference changes on the 14.5 nm reflection during rapid length changes, Biophys. J. 78:134A.Google Scholar
  23. Huxley, H. E., Reconditi, M., Stewart, A., and Irving, T., 2002, Crossbridge and backbone contributions to interference effects on meridional X-ray reflections, Biophys. J. 82:5A.Google Scholar
  24. Huxley, H. E., Reconditi, M., Stewart, A., and Irving, T., 2003b, What the higher order meridional reflections tell us, Biophys. J. 84:139A.Google Scholar
  25. Huxley, H. E., Reconditi, M., Stewart, A., Irving, T., Fischetti, R., 2001, Use of X-ray interferometry to study crossbridge behavior during rapid mechanical transients, Biophys. J. 80:266A.Google Scholar
  26. Huxley, H. E., Reconditi, M., Stewart, A., and Irving, T., 2003a, X-ray interference evidence concerning the range of crossbridge movement and backbone contributions to the meridional pattern, in: Molecular and Cellular Aspects of Muscle Contraction, H. Sugi, ed., Klewer/Plenum, New York, pp. 233–241.Google Scholar
  27. Huxley, H. E., Reconditi, M., Stewart, A., and Irving, T., 2004, Implications of the predicted dispersion of lever arm angles in contraction, Biophys J. 86:214A.Google Scholar
  28. Huxley, H. E., Reconditi, M., Stewart, A., and Irving, T., 2005, Crossbridge configurations in frog sartorius muscle during steady shortening, Biophys. J. 88:606A.Google Scholar
  29. Irving, M., Lombardi, V., Piazzesi, G., and Ferenczi, M., 1992, Myosin head movements are synchronous with the elementary force-generating process in muscle, Nature 357:156–158.PubMedCrossRefGoogle Scholar
  30. Kishino, A., and Yanagida, T., 1988, Force measurements by micromanipulation of a single actin filament by glass needles, Nature 334:74–76.PubMedCrossRefGoogle Scholar
  31. Kron, S. J., and Spudich, J. A., 1986, Fluorescent actin filaments move on myosin fixed to a glass surface, Proc. Natl. Acad. Sci. USA 83:6272–6276.PubMedCrossRefGoogle Scholar
  32. Linari, M., Piazzesi, G., Dobbie, I., Koubassova, N., Reconditi, M., Narayanan, T., Diat, O., Irving, M., and Lombardi, V., 2000, Interference fine structure and sarcomere length dependence of the axial X-ray pattern from active single muscle fibers, Proc. Natl. Acad. Sci. USA 97:7226–7231.PubMedCrossRefGoogle Scholar
  33. Lombardi, V., Piazzesi, G., Ferenczi, M. A., Thirlwell, H., Dobbie, I., and Irving, M., 1995, Elastic distortion of myosin leads and repriming of the working stroke in muscle, Nature 357:553–555.CrossRefGoogle Scholar
  34. Lombardi, V., Piazzesi, G., Linari, M., Vannicelli-Casoni, M. E., Lucii, L., Boesecke, P., Narayahan, T., and Irving, M. 2000, X-ray interference studies of the working stroke in single muscle fibres. Biophys. J. 78:134A.Google Scholar
  35. Mueller, H., and Perry, S. V., 1961, The chromatography of the meromyosins on diethylaminoethylcellulose, Biochem. J. 80:217–223.PubMedGoogle Scholar
  36. Mueller, H., and Perry, S. V., 1962, The degradation of heavy meromyosin by trypsin, Biochem. J. 85:431–439.PubMedGoogle Scholar
  37. Piazzesi, G., Reconditi, M., Linari, M., Lucii, L., Sun, Y-B., Nagayanan, T., Boesecke, P., Lombardi, V., and Irving, M., 2002, Mechanism of force generation by myosin heads in skeletal muscle, Nature 415:659–662.PubMedCrossRefGoogle Scholar
  38. Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., and R.A, M., 1993b, Structure of the actin-myosin complex and its implications for muscle contraction, Science 261:58–65.PubMedCrossRefGoogle Scholar
  39. Rayment, I., Rypniewski, W., Schmidt-Base, K., Smith, R., Tomchick, D., Benning, M., Winkelmann, D., Wesenberg, G., and Holden, H., 1993a, Three-dimensional structure of myosin subfragment-1: a molecular motor, Science 162:50–58.CrossRefGoogle Scholar
  40. Reconditi, M., Linari, M., Lucii, L., Stewart, A., Sun, Y. B., Boesecke, P., Narayanan, T., Fischetti, R. F., Irving, T., Piazzesi, G., Irving, M., and Lombardi V., 2004, The myosin motor in muscle generates a smaller and slower working stroke at higher load, Nature 428:6982:578–581.PubMedCrossRefGoogle Scholar
  41. Reedy, M. K., Holmes, K. C., and Tregear, R. T., 1965, Induced changes in orientation of the crossbridges of glycerinated insect flight muscle, Nature 207:1276–1280.PubMedCrossRefGoogle Scholar
  42. Rosenbaum, G., Holmes, K. C., and Witz, J., 1971, Synchrotron radiation as a source for X-ray diffraction, Nature 230:434–437.CrossRefGoogle Scholar
  43. Sheetz, M. P., and Spudich, J. A., 1983, Movement of myosin-coated fluorescent beads on actin cables in vitro, Nature 303:31–35.PubMedCrossRefGoogle Scholar
  44. Spudich, J. A., Kron, S. J., and Sheetz, M. P., 1985, Movement of myosin-coated beads on oriented filaments reconstituted from purified actin, Nature 315:584–586.PubMedCrossRefGoogle Scholar
  45. Szent-Gyorgyi, A. G., 1953, Meromyosins, the subunits of myosin, Arch. Biochem. Biophys. 42:305–320.PubMedCrossRefGoogle Scholar
  46. Toyoshima, Y. Y., Kron, S. J., McNally, E. M., Niebling, K. R., Toyoshima, C., and Spudich, J. A. 1987, Myosin subfragment-l is sufficient to move actin filaments in vitro. Nature Lond. 328:536–539.PubMedCrossRefGoogle Scholar
  47. Worthington, C. R., 1959, Large axial spacings in striated muscle, J. Mol. Biol. 1:398–401.CrossRefGoogle Scholar
  48. Yanagida, T., Arata, T., and Oosawa, F., 1985, Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle, Nature 316:366–369.Google Scholar
  49. Yanagida, T., Nakase, M., Nishiyama, K., and Oosowa, F., 1984, Direct observation of motion of single F-actin filaments in the presence of myosin, Nature 307:58–60.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Hugh E. Huxley
    • 1
  1. 1.Rosenstiel CenterBrandeis UniversityWalthamUSA

Personalised recommendations