Molecular Pathogenic Mechanisms of Cardiomyopathies Caused by Mutations in Cardiac Troponin T

  • Sachio Morimoto
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 592)


Troponin plays a central role in the Ca2+ regulation of contraction in vertebrate skeletal and cardiac muscles. It consists of three subunits with distinct structure and function, troponin T (TnT), troponin I (TnI), and troponin C (TnC), and their accurate and complex intermolecular interaction in response to the rapid rise and fall of Ca2+ in cardiac and skeletal myocytes plays a key role in maintaining the normal cardiac pump function and body movement. Over past decade, a great number of mutations in human genes for the troponin subunits have been shown to cause striated muscle disorders.


Cardiac Muscle Hypertrophic Cardiomyopathy Cardiac Troponin Cardiac Muscle Contraction Nemaline Myopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

19.5. References

  1. 1.
    F. Ahmad, J. G. Seidman, and C. E. Seidman, The genetic basis for cardiac remodeling. Annu. Rev. Genomics Hum. Genet. 6, 185–216 (2005).PubMedCrossRefGoogle Scholar
  2. 2.
    S. S. Sung, A. E. Brassington, K. Grannatt, A. Tutherford, F. G. Whitby, P. A. Krakowiad, L. B. Jorde, J. C. Carey, and M. Bamshad, Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am. J. Hum. Genet. 72(3), 681–690 (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    S. S. Sung, A. E. Brassington, P. A. Krakowiak, J. C. Carey, L. B. Jorde, and M. Bamshad, Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B. Am. J. Hum. Genet. 73(1), 212–214 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    J. J. Johnston, R. I. Kelley, T. O. Crawford, D. H. Morton, R. Agarwala, T. Koch, A. A. Schaffer, C. A. Francomano, and L. G. Biesecker, A novel nemaline myopathy in the amish caused by a mutation in troponin T. Am. J. Hum. Genet. 67(4), 814–821 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Ebashi, Third component participating in the superprecipitation of “natural actomyosin”. Nature 200, 1010 (1963).PubMedCrossRefGoogle Scholar
  6. 6.
    G. W. Dec, and V. Fuster, Idiopathic dilated cardiomyopathy. N. Engl. J. Med. 331(23), 1564–1575 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    B. J. Maron, Hypertrophic cardiomyopathy: a systematic review. JAMA 287(10), 1308–1320 (2002).PubMedCrossRefGoogle Scholar
  8. 8.
    S. S. Kushwaha, J. T. Fallon, and V. Fuster, Restrictive cardiomyopathy. N. Engl. J. Med. 336(4), 267–276 (1997).PubMedCrossRefGoogle Scholar
  9. 9.
    B. J. Maron, J. M. Gardin, J. M. Flack, et al., Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92(4), 785–789 (1995).PubMedGoogle Scholar
  10. 10.
    B. J. Maron, J. Shirani, L. C. Poliac, R. Mathenge, W. C. Roberts, and F. O. Mueller, Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 276(3), 199–204 (1996).PubMedCrossRefGoogle Scholar
  11. 11.
    W. McKenna, J. Deanfield, A. Faruqui, D. England, C. Oakley, and J. Goodwin, Prognosis in hypertrophic cardiomyopathy: role of age and clinical, electrocardiographic and hemodynamic features. Am. J. Cardiol. 47(3), 532–538 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    A. A. Geisterfer-Lowrance, S. Kass, G. Tanigawa, H. P. Vosberg, W. McKenna, C. E. Seidman, and J. G. Seidman, A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62(5), 999–1006 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Watkins, C. MacRae, L. Thierfelder, Y. H. Chou, M. Frenneaux, W. McKenna, J. G. Seidman, and C. E. Seidman, A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nat. Genet. 3(4), 333–337 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Harada, and J. D. Potter, Familial hypertrophic cardiomyopathy mutations from different functional regions of troponin T result in different effects on the pH-and Ca2+-sensitivity of cardiac muscle contraction. J. Biol. Chem. 279(15), 14488–14495 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Watkins, W. J. McKenna, L. Thierfelder, Wat, Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med. 332(16), 1058–1064 (1995).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Richard, P. Charron, L. Carrier, C. Ledeuil, T. Cheav, C. Pichereau, A. Benaiche, R. Isnard, O. Dubourg, M. Burban, J. P. Gueffet, A. Millaire, M. Desnos, K. Schwartz, B. Hainque, and M. Komajda, Hypertrophic cardiomyopathy distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107(17), 2227–2232 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    F. Torricelli, F. Girolami, I. Olivotto, I. Passerini, S. Frusconi, D. Vargiu, P. Richard, and F. Cecchi, Prevalence and clinical profile of troponin T mutations among patients with hypertrophic cardiomyopathy in tuscany. Am. J. Cardiol. 92(11), 1358–1362 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    N. D. Epstein, G. M. Cohn, F. Cyran, and L. Fananapazir, Differences in clinical expression of hypertrophic cardio-myopathy associated with two distinct mutations in the β-myosin heavy chain gene: a 908Leu → Val mutation and a 403Arg → Gln mutation. Circulation 86(2), 345–352 (1992).PubMedGoogle Scholar
  19. 19.
    H. Watkins, A. Rosenzweig, D.-S. Hwang, T. Levi, W. McKenna, C. E. Seidman, and J. G. Seidman, Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med. 326(17), 1108–1114 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Anan, G. Greve, L. Thierfelder, H. Watkins, W. J. McKenna, S. Solomon, C. Vecchio, H. Shono, S. Nakao, H. Tanaka, A. Mares, Jr., J. A. Towbin, P. Spirito, R. Roberts, J. G. Seidman, and C. E. Seidman, Prognostic implications of novel cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J. Clin. Invest. 93(1), 280–285 (1994).PubMedGoogle Scholar
  21. 21.
    H. Watkins, C. E. Seidman, J. G. Seidman. H. S. Feng, and H. L. Sweeney, Expression and functional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. J. Clin. Invest. 98(11), 2456–2461 (1996).PubMedGoogle Scholar
  22. 22.
    H. L. Sweeney, H. S. Feng, Z. Yang, and H. Watkins, Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Proc. Natl. Acad. Sci. USA 95(24), 14406–14410 (1998).PubMedCrossRefGoogle Scholar
  23. 23.
    A. J. Marian, G. Zhao, Y. Seta, R. Roberts, and Q. Yu, Expression of a mutant (Arg92Gln) human cardiac troponin T, known to cause hypertrophic cardiomyopathy, impairs adult cardiac myocyte contractility. Circ. Res. 81(1), 76–85 (1997).PubMedGoogle Scholar
  24. 24.
    E. M. Rust, F. P. Albayya, and J. M. Metzger, Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins. J. Clin. Invest. 103(10), 1459–1467 (1999).PubMedGoogle Scholar
  25. 25.
    S. Morimoto, F. Yanaga, R. Minakami, and I. Ohtsuki, Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy. Am. J. Physiol. Cell Physiol. 275(1 Pt 1), C200–C207 (1998).Google Scholar
  26. 26.
    F. Yanaga, S. Morimoto, and I. Ohtsuki, Ca2+ sensitization and potentiation of the maximum level of myofibrillar ATPase activity caused by mutations of troponin T found in familial hypertrophic cardiomyopathy. J. Biol. Chem. 274(13), 8806–8812 (1999).PubMedCrossRefGoogle Scholar
  27. 27.
    D. Szczesna, R. Zhang, J. Zhao, M. Jones, G. Guzman, and J. D. Potter, Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy. J. Biol. Chem. 275(1), 624–630 (2000).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Miller, D. Szczesna, P. R. Housmans, J. Zhao, F. de Freitas, A. V. Gomes, L. Culbreath, J. McCue, Y. Wang, Y. Xu, W. G. Kerrick, and J. D. Potter, Abnormal contractile function in transgenic mice expressing a familial hypertrophic cardiomyopathy-linked troponin T (I79N) mutation. J. Biol. Chem. 276(6), 3743–3755 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    J. C. Tardiff, T. E. Hewett, B. M. Palmer, C. Olsson, S. M. Factor, R. L. Moore, J. Robbins, and L. A. Leinwand, Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J. Clin. Invest. 104(4), 469–481 (1999).PubMedGoogle Scholar
  30. 30.
    M. Chandra, V. L. M. Rundell, J. C. Tardiff, L. A. Leinwand, P. P. De Tombe, and R. J. Solaro, Ca2+ activation of myofilaments from transgenic mouse hearts expressing R92Q mutant cardiac troponin T. Am. J. Physiol. Heart. Circ. Physiol. 280(2), H705–H713 (2001).PubMedGoogle Scholar
  31. 31.
    S. Morimoto, Q.-W. Lu, K. Harada, F. Takahashi-Yanaga, R. Minakami, M. Ohta, T. Sasaguri, and I. Ohtsuki, Ca2+-desensitizing effect of a deletion mutation ΔK210 in cardiac troponin T that causes familial dilated cardiomyopathy. Proc. Natl. Acad. Sci. USA 99(2), 913–918 (2002).PubMedCrossRefGoogle Scholar
  32. 32.
    S. Morimoto, C.-K. Du, K. Harada, M. Ohta, N. Oka, Q.-W. Lu, R. Minakami, M. Suzuki, T. Sasaguri, K. Yamamura, and I. Ohtsuki, Cardiac function of a transgenic mouse model of ΔGlu160 troponin T mutation-linked familial hypertrophic cardiomyopathy. Biophys. J. 86, 386A (2004).Google Scholar
  33. 33.
    T. E. Haim, C. Dowell, T. Dhjamanti, J. Scheuer, and J. C. Tardiff, Independent mutations in Cardiac Troponin T lead to impairments in calcium handling that relate to alterations in myocellular function. Biophys. J. 86, 47A–48A (2004).Google Scholar
  34. 34.
    H. Nakaura, S. Morimoto, F. Yanaga, M. Nakata, H. Nishi, T. Imaizumi, and I. Ohtsuki, Functional changes in troponin T by a splice donor site mutation that causes hypertrophic cardiomyopathy. Am. J. Physiol. Cell Physiol. 277(2 Pt 1), C225–C232 (1999).Google Scholar
  35. 35.
    G. Cuda, L. Fananapazir, W.-S. Zhu, J. R. Sellers, and N. D. Epstein, Skeletal muscle expression and abnormal function of β-myosin in hypertrophic cardiomyopathy. J. Clin. Invest. 91(6), 2861–2865 (1993).PubMedGoogle Scholar
  36. 36.
    H. L. Sweeney, A. J. Straceski, L. A. Leinwand, B. A. Tikunov, and L. Faust, Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J. Biol. Chem. 269(3), 1603–1605 (1994).PubMedGoogle Scholar
  37. 37.
    E. B. Lankford, N. D. Epstein, L. Fananapazir, and H. L. Sweeney, Abnormal contractile properties of muscle fibers expressing β-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J. Clin. Invest. 95(3), 1409–1414 (1995).PubMedGoogle Scholar
  38. 38.
    H. Fujita, S. Sugiura, S. Momomura, M. Omata, H. Sugi, and K. Sutoh, Characterization of mutant myosins of dictyostelium discoideum equivalent to human familial hypertrophic cardiomyopathy mutants — molecular force level of mutant myosins may have a prognostic implication. J. Clin. Invest. 99(5), 1010–1015 (1997).PubMedGoogle Scholar
  39. 39.
    E. K. Kasper, W. R. Agema, G. M. Hutchins, J. W. Deckers, J. M. Hare, and K. L. Baughman, The causes of dilated cardiomyopathy: a clinicopathologic review of 673 consecutive patients. J. Am. Coll. Cardiol. 23(3), 586–590 (1994).PubMedCrossRefGoogle Scholar
  40. 40.
    E. M. Gilbert, and M. R. Bristow, Idiopathic dilated cardiomyopathy. In: The Heart, edited by J. W. Hurst (MacGraw-Hill, New York, 1994), pp. 1609–1619.Google Scholar
  41. 41.
    D. Fatkin, and R. M. Graham, Molecular mechanisms of inherited cardiomyopathies. Physiol. Rev. 82(4), 945–980 (2002).PubMedGoogle Scholar
  42. 42.
    J. Mogensen, R. T. Murphy, T. Shaw, A. Bahl, C. Redwood, H. Watkins, M. Burke, P. M. Elliott, and W. J. McKenna, Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 44(10), 2033–2040 (2004).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Kamisago, S. D. Sharma, S. R. DePalma, S. Solomon, P. Sharma, B. McDonough, L. Smoot, M. P. Mullen, P. K. Woolf, E. D. Wigle, J. G. Seidman, and C. E. Seidman, Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 343(23), 1688–1696 (2000).PubMedCrossRefGoogle Scholar
  44. 44.
    E. L. Hanson, P. M. Jakobs, H. Keegan, K. Coates, S. Bousman, N. H. Dienel, M. Litt, and R. E. Hershberger, Cardiac troponin T lysine 210 deletion in a family with dilated cardiomyopathy. J. Card. Fail. 8(1), 28–32 (2002).PubMedCrossRefGoogle Scholar
  45. 45.
    P. Robinson, M. Mirza, A. Knott, H. Abdulrazzak, R. Willott, S. Marston, H. Watkins, and C. Redwood, Alterations in thin filament regulation induced by a human cardiac troponin T mutant that causes dilated cardiomyopathy are distinct from those induced by troponin T mutants that cause hypertrophic cardiomyopathy. J. Biol. Chem. 277(43), 40710–40716 (2002).PubMedCrossRefGoogle Scholar
  46. 46.
    G. Venkatraman, K. Harada, A. V. Gomes, W. G. Kerrick, and J. D. Potter, Different functional properties of troponin T mutants that cause dilated cardiomyopathy. J. Biol. Chem. 278(43), 41670–41676 (2003).PubMedCrossRefGoogle Scholar
  47. 47.
    J. C. Ruegg, Calcium in Muscle Activation (Springer-Verlag, Berlin; Tokyo, 1986).Google Scholar
  48. 48.
    M. Tanokura, Y. Tawada, A. Ono, and I. Ohtsuki, Chymotryptic subfragments of troponin T from rabbit skeletal muscle. Interaction with tropomyosin, troponin I and troponin C. J. Biochem. (Tokyo) 93(2), 331–337 (1983).Google Scholar
  49. 49.
    S. Takeda, A. Yamashita, K. Maeda, and Y. Maeda, Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424, 35–41 (2003).PubMedCrossRefGoogle Scholar
  50. 50.
    S. Morimoto, C.-K. Du, M. Ohta, Q.-W. Lu, K. Harada, K. Nishii, R. Minakami, N. Oka, N. Tadano, J. Miyazaki, K. Yamamura, and I. Ohtsuki, A knock-in mouse model for familial dilated cardiomyopathy caused by the mutation ΔK210 in cardiac troponin T. Biophys. J. 88(1), 480A (2005).Google Scholar
  51. 51.
    D. Li, G. Z. Czernuszewicz, O. Gonzalez, T. Tapscott, A. Karibe, J. B. Durand, R. Brugada, R. Hill, J. M. Gregoritch, J. L. Anderson, M. Quinones, L. L. Bachinski, and R. Roberts, Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation 104(8), 2188–2193 (2001).PubMedGoogle Scholar
  52. 52.
    Q.-W. Lu, S. Morimoto, K. Harada, C. K. Du, F. Takahashi-Yanaga, Y. Miwa, T. Sasaguri, and I. Ohtsuki, Cardiac troponin T mutation R141W found in dilated cardiomyopathy stabilizes the troponin T-tropomyosin interaction and causes a Ca2+ desensitization. J. Mol. Cell. Cardiol. 35(12), 1421–1427 (2003).PubMedCrossRefGoogle Scholar
  53. 53.
    G. Venkatraman, A. V. Gomes, W. G. L. Kerrick, and J. D. Potter, Characterization of troponin T dilated cardiomyopathy mutations in the fetal troponin isoform. J. Biol. Chem. 280(18), 17584–17592 (2005).PubMedCrossRefGoogle Scholar
  54. 54.
    I. Ohtsuki, K. Maruyama, and S. Ebashi, Regulatory and cytoskeletal proteins of vertebrate skeletal muscle. Adv. Protein Chem. 38, 1–67 (1986).PubMedCrossRefGoogle Scholar
  55. 55.
    T. Palm, S. Graboski, S. E. Hitchcock-DeGregori, and N. J. Greenfield, Disease-causing mutations in cardiac troponin T: identification of a critical tropomyosin-binding region. Biophys. J. 81(5), 2827–2837 (2001).PubMedCrossRefGoogle Scholar
  56. 56.
    J. James, Y. Zhang, H. Osinska, A. Sanbe, R. Klevitsky, T. E. Hewett, and J. Robbins, Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy. Circ. Res. 87(9), 805–811 (2000).PubMedGoogle Scholar
  57. 57.
    D. E. Montgomery, J. C. Tardiff, and M. Chandra, Cardiac troponin T mutations: correlation between the type of mutation and the nature of myofilament dysfunction in transgenic mice. J. Physiol. 536(Pt 2), 583–592 (2001).PubMedCrossRefGoogle Scholar
  58. 58.
    M. M. Javadpour, J. C. Tardiff, I. Pinz, and J. S. Ingwall, Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J. Clin. Invest. 112(5), 768–775 (2003).PubMedCrossRefGoogle Scholar
  59. 59.
    J. G. Crilley, E. A. Boehm, E. Blair, B. Rajagopalan, A. M. Blamire, P. Styles, W. J. McKenna, I. Ostman-Smith, K. Clarke, and H. Watkins, Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol. 41(10), 1776–1782 (2003).PubMedCrossRefGoogle Scholar
  60. 60.
    M. Mirza, S. Marston, R. Willott, C. Ashley, J. Mogensen, W. McKenna, P. Robinson, C. Redwood, and H. Watkins, Dilated cardiomyopathy mutations in three thin filament regulatory proteins result in a common functional phenotype. J. Biol. Chem. 280(31), 28498–28506 (2005).PubMedCrossRefGoogle Scholar
  61. 61.
    A. N. Chang, K. Harada, M. J. Ackerman, and J. D. Potter, Functional consequences of hypertrophic and dilated cardiomyopathy-causing mutations in alpha-tropomyosin. J. Biol. Chem. 280(40), 34343–34349 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Sachio Morimoto
    • 1
  1. 1.Department of Clinical PharmacologyKyushu University Graduate School of MedicineFukuokaJapan

Personalised recommendations