Skip to main content

Crystal Structures of Tropomyosin: Flexible Coiled-Coil

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 592))

13.1. Abstruct

Tropomyosin (Tm) is a 400 Å long coiled coil protein, and with troponin it regulates contraction in skeletal and cardiac muscles in a [Ca2+]-dependent manner. Tm consists of multiple domains with diverse stabilities in the coiled coil form, thus providing Tm with dynamic flexibility. This flexibility must play important roles in the actin binding and the cooperative transition between the calcium regulated states of the entire muscle thin filament. In order to understand the flexibility of Tm in its entirety, the atomic coordinates of Tm are needed. Here we report the two crystal structures of Tm segments. One is rabbit skeletal muscle α-Tm encompassing residues 176–284 with an N-terminal extension of 25 residues from the leucine zipper sequence of GCN4, which includes the region that interacts with the troponin core domain. The other is α-Tm encompassing residues 176–273 with N- and C-terminal extensions of the leucine zipper sequences. These two crystal structures imply that this molecule is a flexible coiled coil. First, Tm’s are not homogeneous and smooth coiled coils, but instead they undulate, with highly fluctuating local parameters specifying the coiled coil. Independent fluctuating showed by two crystal structures is important. Second, in the first crystal, the coiled coil is bent by 9 degrees in the region centered about Y214-E218-Y221, where the inter-helical distance has its maximum. On the other hand, no bend is observed at the same region in the second crystal even if its inter-helical distance has also its maximum. E218, an unusual negatively charged residue at the a position in the heptad repeat, seems to play the key role in destabilizing the coiled coil with alanine destabilizing clusters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13.7. References

  1. K. Bailey, Tropomyosin: a new asymmetric protein component of muscle, Nature 157, 368–369 (1946).

    CAS  Google Scholar 

  2. S. Ebashi, Calcium ions and muscle contraction, Nature 240(5378), 217–218 (1972).

    Article  PubMed  CAS  Google Scholar 

  3. S. Ebashi, and M. Endo, Calcium ion and muscle contraction, Prog. Biophys. Mol. Biol. 18, 123–183 (1968).

    Article  PubMed  CAS  Google Scholar 

  4. S. V. Perry, Vertebrate tropomyosin: distribution, properties and function, J. Muscle Res. Cell Motil. 22(1), 5–49 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. J. P. Lees-Miller, and D. M. Helfman, The molecular basis for tropomyosin isoform diversity, Bioessays 13(9), 429–437 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. I. Ohtsuki, K. Maruyama, and S. Ebashi, Regulatory and cytoskeletal proteins of vertebrate skeletal muscle, Adv. Protein. Chem. 38, 1–67 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. A. N. Lupas, and M. Gruber, The structure of alpha-helical coiled coils, Adv. Protein. Chem. 70, 37–78 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. F. H. Crick, Is alpha-keratin a coiled coil?, Nature 170(4334), 882–883 (1952).

    Article  PubMed  CAS  Google Scholar 

  9. T. Alber, Structure of the leucine zipper, Curr. Opin. Genet. Dev. 2(2), 205–210 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. D. N. Marti, and H. R. Bosshard, Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges, J. Mol. Biol. 330(3), 621–637 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. B. Tripet, K. Wagschal, P. Lavigne, C. T. Mant, and R. S. Hodges, Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position “d”, J. Mol. Biol. 300(2), 377–402 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. K. Wagschal, B. Tripet, P. Lavigne, C. Mant, and R. S. Hodges, The role of position a in determining the stability and oligomerization state of alpha-helical coiled coils: 20 amino acid stability coefficients in the hydrophobic core of proteins, Protein Sci. 8(11), 2312–2329 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. E. K. O’Shea, J. D. Klemm, P. S. Kim, and T. Alber, X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil, Science 254(5031), 539–544 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. S. M. Lu, and R. S. Hodges, Defining the minimum size of a hydrophobic cluster in two-stranded alpha-helical coiled-coils: effects on protein stability, Protein Sci. 13(3), 714–726 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. S. C. Kwok, and R. S. Hodges, Stabilizing and destabilizing clusters in the hydrophobic core of long two-stranded alpha-helical coiled-coils, J. Biol. Chem. 279(20), 21576–21588 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. A. Singh, and S. E. Hitchcock-DeGregori, Local destabilization of the tropomyosin coiled coil gives the molecular flexibility required for actin binding, Biochemistry 42(48), 14114–14121 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. K. I. Sano, K. Maeda, H. Taniguchi, and Y. Maeda, Amino-acid replacements in an internal region of tropomyosin alter the properties of the entire molecule, Eur. J. Biochem. 267(15), 4870–4877 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. E. F. Woods, The conformational stabilities of tropomyosins, Aust. J. Biol. Sci. 29(5–6), 405–418 (1976).

    PubMed  CAS  Google Scholar 

  19. A. Sato, and K. Mihashi, Thermal modification of structure of tropomyosin. I. Changes in the intensity and polarization of the intrinsic fluorescence (tyrosine), J. Biochem. (Tokyo) 71(4), 597–605 (1972).

    CAS  Google Scholar 

  20. S. S. Lehrer, Effects of an interchain disulfide bond on tropomyosin structure: intrinsic fluorescence and circular dichroism studies, J. Mol. Biol. 118(2), 209–226 (1978).

    Article  PubMed  CAS  Google Scholar 

  21. P. Graceffa, and S. S. Lehrer, The excimer fluorescence of pyrene-labeled tropomyosin. A probe of conformational dynamics, J. Biol. Chem. 255(23), 11296–11300 (1980).

    PubMed  CAS  Google Scholar 

  22. S. L. Betcher-Lange, and S. S. Lehrer, Pyrene excimer fluorescence in rabbit skeletal alphaalphatropo-myosin labeled with N-(1-pyrene)maleimide. A probe of sulfhydryl proximity and local chain separation, J. Biol. Chem. 253(11), 3757–3760 (1978).

    PubMed  CAS  Google Scholar 

  23. D. R. Betteridge, and S. S. Lehrer, Two conformational states of didansylcystine-labeled rabbit cardiac tropomyosin, J. Mol. Biol. 167(2), 481–496 (1983).

    Article  PubMed  CAS  Google Scholar 

  24. P. Graceffa, and S. S. Lehrer, Dynamic equilibrium between the two conformational states of spin-labeled tropomyosin., Biochemistry 23(12), 2606–2612 (1984).

    Article  PubMed  CAS  Google Scholar 

  25. B. F. Edwards, and B. D. Sykes, Nuclear magnetic resonance evidence for the coexistence of several conformational states of rabbit cardiac and skeletal tropomyosins, Biochemistry 19(12), 2577–2583 (1980).

    Article  PubMed  CAS  Google Scholar 

  26. S. A. Potekhin, and P. L. Privalov, Co-operative blocks in tropomyosin, J. Mol. Biol. 159(3), 519–535 (1982).

    Article  PubMed  CAS  Google Scholar 

  27. D. L. Williams Jr., and C. A. Swenson, Tropomyosin stability: assignment of thermally induced conformational transitions to separate regions of the molecule, Biochemistry 20(13), 3856–3864 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. F. G. Whitby, and G. N. Phillips Jr., Crystal structure of tropomyosin at 7 Angstroms resolution, Proteins 38(1), 49–59 (2000).

    Article  PubMed  CAS  Google Scholar 

  29. J. H. Brown, K. H. Kim, G. Jun, N. J. Greenfield, R. Dominguez, N. Volkmann, S. E. Hitchcock-DeGregori, and C. Cohen, Deciphering the design of the tropomyosin molecule, Proc. Natl. Acad. Sci. USA 98(15), 8496–8501 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. Li, Y., S. Mui, J. H. Brown, J. Strand, L. Reshetnikova, L. S. Tobacman, and C. Cohen, The crystal structure of the C-terminal fragment of striated-muscle alpha-tropomyosin reveals a key troponin T recognition site, Proc. Natl. Acad. Sci. USA 99(11), 7378–7383 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. N. J. Greenfield, G. V. Swapna, Y. Huang, T. Palm, S. Graboski, G. T. Montelione, and S. E. Hitchcock-DeGregori, The structure of the carboxyl terminus of striated alpha-tropomyosin in solution reveals an unusual parallel arrangement of interacting alpha-helices, Biochemistry 42(3), 614–619 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. N. Ookubo, Intramolecular disulfide linked alphabeta and alphaalpha in oxidized tropomyosin: separation, identification, and process of formation, J. Biochem. (Tokyo) 81(4), 923–931 (1977).

    CAS  Google Scholar 

  33. T. Shimizu, K. Ihara, R. Maesaki, M. Amano, K. Kaibuchi, and T. Hakoshima, Parallel coiled-coil association of the RhoA-binding domain in Rho-kinase, J. Biol. Chem. 278(46), 46046–46051 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. M. V. Vinogradova, D. B. Stone, G. G. Malanina, C. Karatzaferi, R. Cooke, R. A. Mendelson, and R. J. Fletterick, Ca(2+)-regulated structural changes in troponin, Proc. Natl. Acad. Sci. USA 102(14), 5038–5043 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. S. Takeda, A. Yamashita, K. Maeda, and Y. Maeda, Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form, Nature 424(6944), 35–41 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. R. Maytum, F. Bathe, M. Konrad, and M. A. Geeves, Tropomyosin exon 6b is troponin-specific and required for correct acto-myosin regulation, J. Biol. Chem. 279(18), 18203–18209 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. L. Kluwe, K. Maeda, A. Miegel, S. Fujita-Becker, Y. Maeda, G. Talbo, T. Houthaeve, and R. Kellner, Rabbit skeletal muscle alpha alpha-tropomyosin expressed in baculovirus-infected insect cells possesses the authentic N-terminus structure and functions, J. Muscle Res. Cell Motil. 16(2), 103–110 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. M. Sugahara, and M. Miyano, Development of high-throughput automatic protein crystallization and observation system, Tanpakushitsu Kakusan Koso 47(8 Suppl), 1026–1032 (2002).

    PubMed  CAS  Google Scholar 

  39. S. Adachi, T. Oguchi, H. Tanida, S.-Y. Park, H. Shimizu, H. Miyatake, N. Kamiya, Y. Shiro, Y. Inoue, T. Ueki, and T. Iizuka, The RIKEN Structural Biology Beamline II (BL44B2) at the SPring-8, Nucl. Instrum. Methods Phys. Res. A 467, 711–714 (2001).

    Google Scholar 

  40. J. W. Pflugrath, The finer things in X-ray diffraction data collection, Acta Crystallogr. D Biol. Crystallogr. 55(Pt 10), 1718–1725 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. J. Navaza, Implementation of molecular replacement in AMoRe, Acta Crystallogr. D Biol. Crystallogr. 57(Pt 10), 1367–1372 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. E. Potterton, P. Briggs, M. Turkenburg, and E. Dodson, A graphical user interface to the CCP4 program suite, Acta Crystallogr. D Biol. Crystallogr. 59(Pt 7), 1131–1137 (2003).

    Article  PubMed  Google Scholar 

  43. Collaborative Computational Project, Number 4, The CCP4 suite: programs for protein crystallography, Acta Crystallogr. D Biol. Crystallogr. 50(Pt 5), 760–763 (1994).

    Article  Google Scholar 

  44. D. E. McRee, XtalView/Xfit — A versatile program for manipulating atomic coordinates and electron density, J. Struct. Biol. 125(2–5), 156–165 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. D. E. McRee, Differential evolution for protein crystallographic optimizations, Acta Crystallogr. D Biol. Crystallogr. 60 (Pt 12, No 1), 2276–2279 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. S. V. Strelkov, and P. Burkhard, Analysis of alpha-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation, J. Struct. Biol. 137(1–2), 54–64 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Nitanai, Y., Minakata, S., Maeda, K., Oda, N., Maéda, Y. (2007). Crystal Structures of Tropomyosin: Flexible Coiled-Coil. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_13

Download citation

Publish with us

Policies and ethics