Skip to main content

Regulation of Chromatin Structure by Curved DNA: How Activator Binding Sites Become Accessible

  • Chapter
Nuclear Dynamics
  • 650 Accesses

Abstract

A single somatic cell of humans contains DNA fibers of a total length of approximately 2 m, which are compacted, without entanglement, into the nucleus of approximately 1×10−5 m in diameter. To greater or lesser degrees, all organisms compact their DNA. Biologically important DNA regions, such as the origins of DNA replication, regulatory regions of transcription, and recombination loci, must all be compacted. The tightly constrained DNA, however, presents the appropriate environment for replication, transcription, and recombination to take place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalfs JD, Kingston RE (2000) What does “chromatin remodeling” mean? Trends Biochem Sci 25:548–555

    Article  PubMed  CAS  Google Scholar 

  • Aimer A, Rudolph H, Hinnen A, Horz W (1986) Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J 5:2689–2696

    Google Scholar 

  • Angermayr M, Oechsner U, Gregor K, Schroth GP, Bandlow W (2002) Transcription initiation in vivo without classical transactivators: DNA kinks flanking the core promoter of the housekeeping yeast adenylate kinase gene, AKY2, position nucleosomes and constitutively activate transcription. Nucleic Acids Res 30:4199–4207

    Article  PubMed  CAS  Google Scholar 

  • Anselmi C, Bocchinfuso G, De Santis P, Savino M, Scipioni A (1999) Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability. J Mol Biol 286:1293–1301

    Article  PubMed  CAS  Google Scholar 

  • Archer TK, Lefebvre P, Wolford RG, Hager GL (1992) Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255:1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Asayama M, Hayasaka Y, Kabasawa M, Shirai M, Ohyama T (1999) An intrinsic DNA curvature found in the cyanobacterium Microcystis aeruginosa K-81 affects the promoter activity of rpoDl encoding a principal sigma factor. J Biochem (Tokyo) 125:460–468

    PubMed  CAS  Google Scholar 

  • Asayama M, Kato H, Shibato J, Shirai M, Ohyama T (2002) The curved DNA structure in the 5′-upstream region of the light-responsive genes: its universality, binding factor and function for cyanobacterial psbA transcription. Nucleic Acids Res 30:4658–4666

    Article  PubMed  CAS  Google Scholar 

  • Barbie A, Zimmer DP, Crothers DM (2003) Structural origins of adenine-tract bending. Proc Natl Acad Sci USA 100:2369–2373

    Article  CAS  Google Scholar 

  • Bash RC, Vargason JM, Cornejo S, Ho PS, Lohr D (2001) Intrinsically bent DNA in the promoter regions of the yeast GAL1-10 and GAL80 genes. J Biol Chem 276:861–866

    Article  PubMed  CAS  Google Scholar 

  • Battistoni A, Leoni L, Sampaolese B, Savino M (1988) Kinetic persistence of cruciform structures in reconstituted minichromosomes. Biochim Biophys Acta 950:161–171

    PubMed  CAS  Google Scholar 

  • Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 271:247–273

    Article  CAS  Google Scholar 

  • Blomquist P, Belikov S, Wrange O (1999) Increased nuclear factor 1 binding to its nucleosomal site mediated by sequence-dependent DNA structure. Nucleic Acids Res 27:517–525

    Article  PubMed  CAS  Google Scholar 

  • Brukner I, Belmaaza A, Chartrand P (1997) Differential behavior of curved DNA upon untwisting. Proc Natl Acad Sci USA 94:403–406

    Article  PubMed  CAS  Google Scholar 

  • Calladine CR, Drew HR, McCall MJ (1988) The intrinsic curvature of DNA in solution. J Mol Biol 201:127–137

    Article  PubMed  CAS  Google Scholar 

  • Costanzo G, di Mauro E, Salina G, Negri R (1990) Attraction, phasing and neighbour effects of histone octamers on curved DNA. J Mol Biol 216:363–374

    Article  PubMed  CAS  Google Scholar 

  • De Santis P, Kropp B, Leoni L, Sampaolese B, Savino M (1996) Influence of DNA superstructural features and histones aminoterminal domains on mononucleosome and dinucleosome positioning. Biophys Chem 62:47–61

    Article  PubMed  Google Scholar 

  • Diekmann S (1986) Sequence specificity of curved DNA. FEBS Lett 195:53–56

    Article  PubMed  CAS  Google Scholar 

  • Dlakic M, Harrington RE (1998) DIAMOD: display and modeling of DNA bending. Bioinformatics 14:326–331

    Article  PubMed  CAS  Google Scholar 

  • Drew HR, Travers AA (1985) DNA bending and its relation to nucleosome positioning. J Mol Biol 186:773–790

    Article  PubMed  CAS  Google Scholar 

  • Espinas ML, Jimenez-Garcia E, Martinez-Balbas A, Azorin F (1996) Formation of triple-stranded DNA at d(GA·TC)n sequences prevents nucleosome assembly and is hindered by nucleosomes. J Biol Chem 271:31807–31812

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald DJ, Anderson JN (1998) Unique translational positioning of nucleosomes on synthetic DNAs. Nucleic Acids Res 26:2526–2535

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald DJ, Dryden GL, Bronson EC, Williams JS, Anderson JN (1994) Conserved patterns of bending in satellite and nucleosome positioning DNA. J Biol Chem 269:21303–21314

    PubMed  CAS  Google Scholar 

  • Fletcher TM, Ryu B-W, Baumann CT, Warren BS, Fragoso G, John S, Hager GL (2000) Structure and dynamic properties of a glucocorticoid receptor-induced chromatin transition. Mol Cell Biol 20:6466–6475

    Article  PubMed  CAS  Google Scholar 

  • Hagerman PJ (1986) Sequence-directed curvature of DNA. Nature 321:449–450

    Article  PubMed  CAS  Google Scholar 

  • Hirota Y, Ohyama T (1995) Adjacent upstream superhelical writhe influences an Escherichia coli promoter as measured by in vivo strength and in vitro open complex formation. J Mol Biol 254:566–578

    Article  PubMed  CAS  Google Scholar 

  • Ioshikhes I, Bolshoy A, Trifonov EN (1992) Preferred positions of AA and TT dinucleotides in aligned nucleosomal DNA sequences. J Biomol Struct Dyn 9:1111–1117

    PubMed  CAS  Google Scholar 

  • Ioshikhes I, Bolshoy A, Derenshteyn K, Borodovsky M, Trifonov EN (1996) Nucleosome DNA sequence pattern revealed by multiple alignment of experimentally mapped sequences. J Mol Biol 262:129–139

    Article  PubMed  CAS  Google Scholar 

  • John B, Miklos GLG (1979) Functional aspects of satellite DNA and heterochromatin. Int Rev Cytol 58:1–114.

    PubMed  CAS  Google Scholar 

  • Koo HS, Crothers DM (1988) Calibration of DNA curvature and a unified description of sequence-directed bending. Proc Natl Acad Sci USA 85:1763–1767

    Article  PubMed  CAS  Google Scholar 

  • Marilley M, Pasero P (1996) Common DNA structural features exhibited by eukaryotic ribosomal gene promoters. Nucleic Acids Res; 24:2204–2211

    Article  PubMed  CAS  Google Scholar 

  • Marini JC, Levene SD, Crothers DM, Englund PT (1982) Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci USA 79:7664–7668

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Balbas A, Rodriguez-Campos A, Garcia-Ramirez M, Sainz J, Carrera P, Aymami J, Azorin F (1990) Satelite DNAs contain sequences that induced curvature. Biochemistry 29:2342–234

    Article  PubMed  CAS  Google Scholar 

  • Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa J, Amano M, Fukue Y, Tanaka S, Kishi H, Hirota Y, Yoda K, Ohyama T (2003) Left-handedly curved DNA regulates accessibility to cw-DNA elements in chromatin. Nucleic Acids Res 31:6651–6662

    Article  PubMed  CAS  Google Scholar 

  • Ohki R, Hirota M, Oishi M, Kiyama R (1998) Conservation and continuity of periodic bent DNA in genomic rearrangements between the c-myc and immunoglobulin heavy chain μ loci. Nucleic Acids Res 26:3026–3033

    Article  PubMed  CAS  Google Scholar 

  • Ohyama T (1996) Bent DNA in the human adenovirus type 2 El A enhancer is an architectural element for transcription stimulation. J Biol Chem 271:27823–27828

    PubMed  CAS  Google Scholar 

  • Ohyama T (2001) Intrinsic DNA bends: an organizer of local chromatin structure for transcription. BioEssays 23:708–715

    Article  PubMed  CAS  Google Scholar 

  • Ohyama T, Hashimoto S (1989) Upstream half of adenovirus type 2 enhancer adopts a curved DNA conformation. Nucleic Acids Res 17:3845–3853

    Article  PubMed  CAS  Google Scholar 

  • Ohyama T, Nagumo M, Hirota Y, Sakuma S (1992) Alteration of the curved helical structure located in the upstream region of the p-lactamase promoter of plasmid pUC19 and its effect on transcription. Nucleic Acids Res 20:1617–1622

    Article  PubMed  CAS  Google Scholar 

  • Ohyama T, Tsujibayashi H, Tagashira H, Inano K, Ueda T, Hirota Y, Hashimoto K (1998) Suppression of electrophoretic anomaly of bent DNA segments by the structural property that causes rapid migration. Nucleic Acids Res 26:4811–4817

    Article  PubMed  CAS  Google Scholar 

  • Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB (1998) DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci USA 95:11163–11168

    Article  PubMed  CAS  Google Scholar 

  • Pasero P, Sjakste N, Blettry C, Got C, Marilley M (1993) Long-range organization and sequence-directed curvature of Xenopus laevis satellite 1 DNA. Nucleic Acids Res 21:4703–4710

    Article  PubMed  CAS  Google Scholar 

  • Pennings S, Muyldermans S, Meersseman G, Wyns L (1989) Formation, stability and core histone positioning of nucleosomes reassembled on bent and other nucleosome-derived DNA. J Mol Biol 207:183–192

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Workman JL (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10:187–192

    Article  PubMed  CAS  Google Scholar 

  • Pina B, Bruggemeier U, Beato M (1990a) Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 60:719–731

    Article  PubMed  CAS  Google Scholar 

  • Pina B, Barettino D, Truss M, Beato M (1990b) Structural features of a regulatory nucleosome. J Mol Biol 216:975–990

    Article  PubMed  CAS  Google Scholar 

  • Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191:659–675

    Article  PubMed  CAS  Google Scholar 

  • Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374–376

    Article  PubMed  CAS  Google Scholar 

  • Shrader TE, Crothers DM (1989) Artificial nucleosome positioning sequences. Proc Natl Acad Sci USA 86:7418–7422

    Article  PubMed  CAS  Google Scholar 

  • Singer MF (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76:67–112

    Article  PubMed  CAS  Google Scholar 

  • Sivolob AV, Khrapunov SN (1995) Translational positioning of nucleosomes on DNA: the role of sequence-dependent isotropic DNA bending stiffness. J Mol Biol 247:918–931

    Article  PubMed  CAS  Google Scholar 

  • Suter B, Schnappauf G, Thoma F (2000) Poly(dA·dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo. Nucleic Acids Res 28:4083–4089

    Article  PubMed  CAS  Google Scholar 

  • Travers AA (1990) Why bend DNA? Cell 60:177–180

    Article  PubMed  CAS  Google Scholar 

  • Trifonov EN, Sussman JL (1980) The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc Natl Acad Sci USA 77:3816–3820

    Article  PubMed  CAS  Google Scholar 

  • Ulanovsky LE, Trifonov EN (1987) Estimation of wedge components in curved DNA. Nature 326:720–722

    Article  PubMed  CAS  Google Scholar 

  • Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 20:1899–1910

    Article  PubMed  CAS  Google Scholar 

  • Wada-Kiyama Y, Kiyama R (1994) Periodicity of DNA bend sites in human ɛ-globin gene region. Possibility of sequence-directed nucleosome phasing. J Biol Chem 269:22238–22244

    PubMed  CAS  Google Scholar 

  • Wada-Kiyama Y, Kiyama R (1995) Conservation and periodicity of DNA bend sites in the human P-globin gene locus. J Biol Chem 270:12439–12445

    Article  PubMed  CAS  Google Scholar 

  • Wada-Kiyama Y, Kiyama R (1996) An intrachromosomal repeating unit based on DNA bending. Mol Cell Biol 16:5664–5673

    PubMed  CAS  Google Scholar 

  • Widlund HR, Cao H, Simonsson S, Magnusson E, Simonsson T, Nielsen PE, Kahn JD, Crothers DM, Kubista M (1997) Identification and characterization of genomic nucleosome-positioning sequences. J Mol Biol 267:807–817

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1998) Chromatin: structure and function 3rd edn. Academic Press, London

    Google Scholar 

  • Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579

    Article  PubMed  CAS  Google Scholar 

  • Wu HM, Crothers DM (1984) The locus of sequence-directed and protein-induced DNA bending. Nature 308:509–513

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Grunstein M (2000) 25 years after the nucleosome model: chromatin modifications. Trends Biochem Sci 25:619–623

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Thiele DJ (1996) A specialized nucleosome modulates transcription factor access to a C. glabrata metal responsive promoter. Cell 87:459–470

    Article  PubMed  CAS  Google Scholar 

  • Zhurkin VB (1985) Sequence-dependent bending of DNA and phasing of nucleosomes. J Biomol Struct Dyn 2:785–804

    PubMed  CAS  Google Scholar 

  • Zhurkin VB, Lysov YP, Ivanov VI (1979) Anisotropic flexibility of DNA and the nucleosomal structure. Nucleic Acids Res 6:1081–1096

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ohyama, T. (2007). Regulation of Chromatin Structure by Curved DNA: How Activator Binding Sites Become Accessible. In: Nagata, K., Takeyasu, K. (eds) Nuclear Dynamics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-30130-1_10

Download citation

Publish with us

Policies and ethics