Skip to main content

Identification of Different Subtypes of Auditory Neuropathy Using Electrocochleography

  • Conference paper
Neuropathies of the Auditory and Vestibular Eighth Cranial Nerves

Abstract

Currently, the physiological mechanisms underlying auditory neuropathy are unclear, and there are likely to be multiple sites of lesion. A better understanding of the disruption in individual cases may lead to more effective management and device selection. Frequency-specifi c round-window electrocochleography (ECochG) waveforms were used to assess local hair cell, dendritic, and axonal currents generated within the cochlea in 15 subjects with auditory neuropathy (16 ears). These results were compared with electrically evoked auditory brainstem response (EABR) measured after cochlear implantation. The results of this study demonstrate that predominantly two patterns of ECochG waveforms can be identifi ed: (i) a prolonged latency of the hair cell summating potential (SP) waveform with or without residual CAP activity and (ii) a normal latency SP, typically followed by a dendritic potential (DP). We show that seven of eight subjects with a prolonged SP showed a normal EABR waveform, consistent with a presynaptic lesion, whereas six of seven subjects with a normal latency SP showed poor morphology or absent EABR waveforms, consistent with a postsynaptic lesion. We suggest that a presynaptic and postsynaptic type of auditory neuropathy exist, which may have implications for the fi tting of cochlear implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Starr A, Picton T, Sininger Y, et al (1996) Auditory neuropathy. Brain 119:741–753

    Article  PubMed  Google Scholar 

  2. Rance G (2005) Auditory neuropathy/dys-synchrony and its perceptual consequences. Trends Amplif 9:1–43

    Article  PubMed  Google Scholar 

  3. Buss E, Labadie RF, Brown CJ, et al (2002) Outcome of cochlear implantation in pediatric auditory neuropathy. Otol Neurotol 23:328–332

    Article  PubMed  Google Scholar 

  4. Rance G, Cone-Wesson B, Wunderlich J, et al (2002) Speech perception and cortical event related potentials in children with auditory neuropathy. Ear Hear 23:239–253

    Article  PubMed  Google Scholar 

  5. Miyamoto RT, Kirk KI, Renshaw J, et al (1999) Cochlear implantation in auditory neuropathy. Laryngoscope 109:181–185

    Article  PubMed  CAS  Google Scholar 

  6. Starr A, Sininger Y, Nguyen T, et al (2001) Cochlear receptor (microphonic and summating potentials, otoacoustic emissions) and auditory pathway (auditory brain stem potentials) activity in auditory neuropathy. Ear Hear 22:91–99

    Article  PubMed  CAS  Google Scholar 

  7. Ghiz AF, Salt AN, DeMott JE, et al (2001) Quantitative anatomy of the round window and cochlear aqueduct in guinea pigs. Hear Res 162:105–112

    Article  PubMed  CAS  Google Scholar 

  8. Patuzzi RB, Yates GK, Johnstone BM (1989) The origin of the low-frequency microphonic in the fi rst cochlear turn of guinea-pig. Hear Res 39:177–188

    Article  PubMed  CAS  Google Scholar 

  9. Dallos P (1973) The auditory periphery: biophysics and physiology. Academic Press, New York

    Google Scholar 

  10. Russell IJ, Sellick PM (1983) Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells. J Physiol 338:179–206

    PubMed  CAS  Google Scholar 

  11. Zheng XY, Ding DL, McFadden SL, et al (1997) Evidence that inner hair cells are the major source of cochlear summating potentials. Hear Res 113:76–88

    Article  PubMed  CAS  Google Scholar 

  12. Durrant JD, Wang J, Ding DL, et al (1998) Are inner or outer hair cells the source of summating potentials recorded from the round window? J Acoust Soc Am 104:370–376

    Article  PubMed  CAS  Google Scholar 

  13. Dolan DF, Xi L, Nuttall AL (1989) Characterization of an EPSP-like potential recorded remotely from the round window. J Acoust Soc Am 86:2167–2171

    Article  PubMed  CAS  Google Scholar 

  14. Sellick P, Patuzzi R, Robertson D (2003) Primary afferent and cochlear nucleus contributions to extracellular potentials during tone-bursts. Hear Res 176:42–58

    Article  PubMed  Google Scholar 

  15. Kiang NYS, Watanabe T, Thomas EC, et al (1965) Discharge patterns of single fi bres in the cat’s auditory nerve. Research Monograph no. 35. MIT Press, Cambridge

    Google Scholar 

  16. McMahon CM, Patuzzi RB (2002) The origin of the 900 Hz spectral peak in spontaneous and sound-evoked round-window electrical activity. Hear Res 173:134–152

    Article  PubMed  Google Scholar 

  17. Starr A, Sininger YS, Pratt H (2000) The varieties of auditory neuropathy. J Basic Clin Physiol Pharmacol 11:215–230

    PubMed  CAS  Google Scholar 

  18. O’Leary SJ, Mitchell TE, Gibson WP, et al (2000) Abnormal positive potentials in round window electrocochleography. Am J Otol 21:813–818

    PubMed  CAS  Google Scholar 

  19. Patuzzi R, Sellick PM (1983) A comparison between basilar membrane and inner hair cell receptor potential input-output functions in the guinea pig cochlea. J Acous Soc Am 74:1734–1741

    Article  CAS  Google Scholar 

  20. Withnell R (2001) The cochlear microphonic as an indication of outer hair cell function. Ear Hear 22:75–77

    Article  PubMed  CAS  Google Scholar 

  21. Deltenre P, Mansbach AL, Bozet C, et al (1999) Auditory neuropathy with preserved cochlear microphonics and secondary loss of otoacoustic emissions. Audiology 38:187–195

    Article  PubMed  CAS  Google Scholar 

  22. Rodríguez-Ballesteros M, del Castillo FJ, Martín Y, et al (2003) Auditory neuropathy in patients carrying mutations in the otoferlin gene (OTOF). Hum Mutat 22:451–456

    Article  PubMed  CAS  Google Scholar 

  23. Varga R, Kelley PM, Keats BJ, et al (2003) Non-syndromic recessive auditory neuropathy is the result of mutations in the otoferlin (OTOF) gene. J Med Genet 40:45–50

    Article  PubMed  CAS  Google Scholar 

  24. Roux I, Safieddine S, Nouvian R, et al (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:277–289

    Article  PubMed  CAS  Google Scholar 

  25. Zidanic M, Brownell WE (1990) Fine structure of the intracochlear potential field. I. The silent current. Biophys J 57:1253–1268

    Article  PubMed  CAS  Google Scholar 

  26. Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci U S A 97:883–888

    Article  PubMed  CAS  Google Scholar 

  27. Liberman MC (1990) Effects of chronic cochlear de-efferentation on auditory-nerve response. Hear Res 49:209–223

    Article  PubMed  CAS  Google Scholar 

  28. Le Prell CG, Shore SE, Hughes LF, et al (2003) Disruption of lateral efferent pathways: functional changes in auditory evoked responses. J Assoc Res Otolaryngol 4:276–290

    Article  PubMed  Google Scholar 

  29. Katsuki Y, Yanagisawa K, Kanzaki J (1966) Tetraethylammonium and tetrodotoxin: effects on cochlear potentials. Science 151:1544–1545

    Article  PubMed  CAS  Google Scholar 

  30. Lin X (1997) Action potentials and underlying voltage-dependent currents studied in cultured spiral ganglion neurons of the postnatal gerbil. Hear Res 108:157–179

    Article  PubMed  CAS  Google Scholar 

  31. Schmiedt RA, Okamura HO, Lang H, et al (2002) Ouabain application to the round window of the gerbil cochlea: a model of auditory neuropathy and apoptosis. J Assoc Res Otolaryngol 3:223–233

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

McMahon, C.M., Patuzzi, R.B., Gibson, W.P., Sanli, H. (2009). Identification of Different Subtypes of Auditory Neuropathy Using Electrocochleography. In: Kaga, K., Starr, A. (eds) Neuropathies of the Auditory and Vestibular Eighth Cranial Nerves. Springer, Tokyo. https://doi.org/10.1007/978-4-431-09433-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-09433-3_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-09432-6

  • Online ISBN: 978-4-431-09433-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics