Skip to main content

Guide to Planning the Sample Preparation Step

  • Chapter

Abstract

Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS; also referred to as mass spectrometry imaging, MSI) enables the visualization of the distribution of variable biomolecules that have large and varied structures in tissue sections. However, because of such general versatility, the optimization of sample preparation procedure according to each analyte with distinct chemical and physical properties is an important task for IMS, similar to that in traditional MALDI-MS analyses. In this chapter, we briefly introduce the sample preparation strategies of current IMS. We describe the two major strategies for imaging of proteins/peptides and small molecules, such as lipids and drugs. We shall also introduce the representative application example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krause E, Wenschuh H, Jungblut PR (1999) The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal Chem 71:4160–4165

    Article  PubMed  CAS  Google Scholar 

  2. Gharahdaghi F, Kirchner M, Fernandez J, et al. (1996) Peptide-mass profiles of polyvi-nylidene difluoride-bound proteins by matrix-assisted laser desorption/ionization time-offlight mass spectrometry in the presence of nonionic detergents. Anal Biochem 233:94–99

    Article  PubMed  CAS  Google Scholar 

  3. Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    Article  PubMed  CAS  Google Scholar 

  4. Jones JJ, Borgmann S, Wilkins CL, et al. (2006) Characterizing the phospholipid profiles in mammalian tissues by MALDI FTMS. Anal Chem 78:3062–3071

    Article  PubMed  CAS  Google Scholar 

  5. Lemaire R, Wisztorski M, Desmons A, et al. (2006) MALDI-MS direct tissue analysis of proteins: improving signal sensitivity using organic treatments. Anal Chem 78:7145–7153

    Article  PubMed  CAS  Google Scholar 

  6. Li Y, Shrestha B, Vertes A (2007) Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. Anal Chem 79:523–532

    Article  PubMed  CAS  Google Scholar 

  7. Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364

    Article  PubMed  CAS  Google Scholar 

  8. Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38:699–708

    Article  PubMed  CAS  Google Scholar 

  9. Seeley EH, Oppenheimer SR, Mi D, et al. (2008) Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom 19:1069–1077

    Article  PubMed  CAS  Google Scholar 

  10. Kussmann M, Nordhoff E, Rahbek NH, et al. (1997) Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. J Mass Spectrom 32:593–601

    Article  CAS  Google Scholar 

  11. Altelaar AFM, Taban IM, McDonnell LA, et al. (2007) High-resolution MALDI imaging mass spectrometry allows localization of peptide distributions at cellular length scales in pituitary tissue sections. Int J Mass Spectrom 260:9

    Google Scholar 

  12. Katayama H, Nagasu T, Oda Y (2001) Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15:1416–1421

    Article  PubMed  CAS  Google Scholar 

  13. Setou M, Hayasaka T, Shimma S, et al. (2008) Protein denaturation improves enzymatic digestion efficiency for direct tissue analysis using mass spectrometry. Appl Surface Sci 255(4):1555–1559

    Article  CAS  Google Scholar 

  14. Groseclose MR, Andersson M, Hardesty WM, et al. (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom 42:254–262

    Article  PubMed  CAS  Google Scholar 

  15. Shimma S, Furuta M, Ichimura K, et al. (2006) A novel approach to in situ proteome analysis using chemical inkjet printing technology and MALDI-QIT-TOF tandem mass spectrometer. J Mass Spectrom Soc Jpn 54:133–140

    Article  CAS  Google Scholar 

  16. Shimma S, Sugiura Y, Hayasaka T, et al. (2008) Mass imaging and identification of biomol-ecules with MALDI-QIT-TOF-based system. Anal Chem 80:878–885

    Article  PubMed  CAS  Google Scholar 

  17. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    Article  PubMed  CAS  Google Scholar 

  18. Yan R, Bienkowski MJ, Shuck ME, et al. (1999) Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity. Nature (Lond) 402:533–537

    Article  CAS  Google Scholar 

  19. Rohner TC, Staab D, Stoeckli M (2005) MALDI mass spectrometric imaging of biological tissue sections. Mech Ageing Dev 126:177–185

    Article  PubMed  CAS  Google Scholar 

  20. Stoeckli M, Staab D, Staufenbiel M, et al. (2002) Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal Biochem 311:33–39

    Article  PubMed  CAS  Google Scholar 

  21. Jackson SN, Ugarov M, Egan T, et al. (2007) MALDI-ion mobility-TOFMS imaging of lipids in rat brain tissue. J Mass Spectrom 42:1093–1098

    Article  PubMed  CAS  Google Scholar 

  22. Moritake S, Taira S, Sugiura Y, et al. (2008) J Nanosci Nanotechnol (special issue) Adv Mat Nanosci Nanotechnol 8: (in press)

    Google Scholar 

  23. Zhang H, Cha S, Yeung ES (2007) Colloidal graphite-assisted laser desorption/ionization MS and MS(n) of small molecules. 2. Direct profiling and MS imaging of small metabolites from fruits. Anal Chem 79:6575–6584

    Article  PubMed  CAS  Google Scholar 

  24. Cha S, Yeung, ES (2007) Colloidal graphite-assisted laser desorption/ionization mass spec-trometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal Chem 79:2373–2385

    Article  PubMed  CAS  Google Scholar 

  25. Taira S, Sugiura Y, Moritake S, et al. (2008) Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem 80:4761–4766

    Article  PubMed  CAS  Google Scholar 

  26. Garrett TJ, Prieto-Conaway MC, Kovtoun V, et al. (2006) Imaging of small molecules in tissue sections with a new intermediate-pressure MALDI linear ion trap mass spectrometer. Int J Mass Spectrom 260:11

    Google Scholar 

  27. Khatib-Shahidi S, Andersson M, Herman JL, et al. (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78:6448–6456

    Article  PubMed  CAS  Google Scholar 

  28. Trim PJ, Henson CM, Avery JL, et al. (2008) Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal Chem 80:8628–8634

    Article  PubMed  CAS  Google Scholar 

  29. McLean JA, Ridenour WB, Caprioli RM (2007) Profiling and imaging of tissues by imaging ion mobility-mass spectrometry. J Mass Spectrom 42:1099–1105

    Article  PubMed  CAS  Google Scholar 

  30. Rujoi M, Estrada R, Yappert MC (2004) In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal Chem 76:1657–1663

    Article  PubMed  CAS  Google Scholar 

  31. Jackson SN, Wang HY, Woods AS (2005) Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal Chem 77:4523–4527

    Article  PubMed  CAS  Google Scholar 

  32. Puolitaival SM, Burnum KE, Cornett DS, et al. (2008) Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J Am Soc Mass Spectrom 19:882–886

    Article  PubMed  CAS  Google Scholar 

  33. Altelaar AF, Klinkert I, Jalink K, et al. (2006) Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem 78:734–742

    Article  PubMed  CAS  Google Scholar 

  34. Sugiura Y, Shimma S, Konishi Y, et al. (2008) Imaging mass spectrometry technology and application on ganglioside study: visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS ONE 3:e3232

    Article  PubMed  Google Scholar 

  35. Shimma S, Setou M (2007) Mass microscopy to reveal distinct localization of heme B (m/z 616) in colon cancer liver metastasis. J Mass Spectrom Soc Jpn 55:145–148

    Article  CAS  Google Scholar 

  36. Mazel V, Richardin P, Debois D, et al. (2007) Identification of ritual blood in African artifacts using TOF-SIMS and synchrotron radiation microspectroscopies. Anal Chem 79:9253–9260

    Article  PubMed  CAS  Google Scholar 

  37. Jackson SN, Wang HY, Woods AS (2005) In situ structural characterization of phosphatidyl-cholines in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 16:2052–2056

    Article  PubMed  CAS  Google Scholar 

  38. Hayasaka T, Goto-Inoue N, Sugiura Y, et al. (2008) Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. Rapid Commun Mass Spectrom 22:3415–3426

    Article  PubMed  CAS  Google Scholar 

  39. Stoeckli M, Staab D, Schweitzer A (2006) Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections Int J Mass Spectrom 260(2–3):195–202

    Google Scholar 

  40. Atkinson SJ, Loadman PM, Sutton C, et al. (2007) Examination of the distribution of the bioreductive drug AQ4N and its active metabolite AQ4 in solid tumours by imaging matrixassisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 21:1271–1276

    Article  PubMed  CAS  Google Scholar 

  41. Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, and Setou M (2009) Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res 50:1776–1788

    Article  PubMed  CAS  Google Scholar 

  42. Sugiura Y, Setou M. (2009) Selective imaging of positively charged polar and nonpolar lipids by optimizing matrix solution composition, Rapid Commun Mass Spectrom, 30;23(20):3269–78

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutoshi Setou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Sugiura, Y., Setou, M. (2010). Guide to Planning the Sample Preparation Step. In: Setou, M. (eds) Imaging Mass Spectrometry. Springer, Tokyo. https://doi.org/10.1007/978-4-431-09425-8_2

Download citation

Publish with us

Policies and ethics