Advertisement

Approximate Counting und die Monte-Carlo-Methode

Auszug

Uns allen sind „kleine Volkszählungen“ (Mikrozensus), die Ermittlung von Einschaltquoten für Fernsehsendungen, Befragungen über Konsumgüter und Meinungsumfragen, insbesondere die Sonntagsfrage 1, wohlvertraut. Es geht dabei mathematisch gesprochen darum, zuverlässig die Anzahl der Elemente einer Menge zu bestimmen, ohne aus Kostengründen die Menge insgesamt aufzuzählen. Es werden eben nicht alle Wahlbürger befragt, um das Ergebnis der Sonntagsfrage zu ermitteln, sondern lediglich eine repräsentative Teilmenge der Wahlbürger. D. h. die veröffentlichten Zahlen2 sind eine Approximation des tatsächlichen Wertes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.8 Literatur zu Kapitel 8

  1. [Bol98]
    B. Bollobás. Modern Graph Theory. Springer, New York, 1998.zbMATHGoogle Scholar
  2. [Bub00]
    R. H. Bubley. Randomized Algorithms: Approximation, Generation and Counting. Springer Verlag, 2000.Google Scholar
  3. [DFJ98]
    M. Dyer, A. Frieze, and M. Jerrum. Approximately counting Hamilton paths and cycles in dense graphs. SLAM Journal on Computing, 27:1262–1272, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [DFJ99]
    M. Dyer, A. Frieze, and M. Jerrum. On counting independent sets in sparse graphs. In Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS), pages 210–217, 1999.Google Scholar
  5. [DG98]
    M. Dyer and C. Greenhill. A more rapidiy mixing Markov chain for graph colorings. Random Structures & Algorithms, 13:285–317, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [Dye03]
    M. Dyer. Approximate counting by dynamic programming. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC), pages 693–699, 2003.Google Scholar
  7. [Fel70]
    W. Feller. An Introduction to Probability Theory and Applications. Wiley, New York, 1970.Google Scholar
  8. [FV07]
    A. Frieze and E. Vigoda. A survey on the use of Markov chains to randomly sample colorings. In G. Grimmett and C. McDiarmid, editors, Combinatorics, Complexity and Chance — Festschrift for Dominic Welsh. Oxford University Press, 2007.Google Scholar
  9. [HL72]
    O. J. Heilmann and E. H. Liebl. Theory of monomer-dimer Systems. Communications in Mathematical Physics, 25:190–232, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [Jer95]
    M. Jerrum. A very simple algorithm for estimating the number of k-colorings of a low-degree graph. Random Structures & Algorithms, 7:157–165, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Jer98]
    M. Jerrum. Mathematical foundations of the Markov chain Monte Carlo method. In Probabilistic Methods for Algorithmic Discrete Mathematics, volume 16 of Algorithms and Combinatorics, pages 116–165. Springer, 1998.MathSciNetGoogle Scholar
  12. [Jer03]
    M. Jerrum. Counting, Sampling and Integrating: Algorithms and Complexity. Birkhäuser, 2003.Google Scholar
  13. [JS96]
    M. Jerrum and A. Sinclair. The Markov chain Monte-Carlo method: An approach to approximate counting and integration. In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, pages 482–520. PWS, 1996.Google Scholar
  14. [JSV01]
    M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. In Proc. 39th ACM Symposium on Theory of Computing (STOC), pages 712–721, 2001.Google Scholar
  15. [JVV86]
    M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [KLM89]
    R. M. Karp, M. Luby, and N. Madras. Monte-Carlo approximation algorithms for enumeration problems. Journal of Algorithms, 10:429–148, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [LP86]
    L. Lovász and M. D. Plummer. Matching Theory. North-Holland, 1986.Google Scholar
  18. [LV99]
    M. Luby and E. Vigoda. Fast convergence of the Glauber dynamics for sampling independent sets. Random Structures & Algorithms, 15:229–241, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [Met87]
    N. Metropolis. The beginning of the Monte Carlo method. Los Alamos Science, 15:125–130, 1987.MathSciNetGoogle Scholar
  20. [MR95]
    R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge, 1995.zbMATHGoogle Scholar
  21. [MS99]
    B. Morris and A. Sinclair. Random walks on truncated cubes and sampling 0–1 knapsack Solutions. In Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS), pages 230–240, 1999.Google Scholar
  22. [Pap94]
    C. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, Massachusetts, 1994.zbMATHGoogle Scholar
  23. [Sin93]
    A. Sinclair. Algorithms for Random Generation & Counting: A Markov Chain Approach. Birkhäuser, Boston, 1993.zbMATHGoogle Scholar
  24. [Tut84]
    W. T. Tutte. Graph Theory. Addison Wesley, 1984.Google Scholar
  25. [Wel93]
    D. Welsh. Complexity: Knots, Colourings and Counting. Cambridge University Press, 1993.Google Scholar

Copyright information

© B.G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden 2006

Personalised recommendations