Advertisement

Techniken für randomisierte Approximationsalgorithmen

Auszug

Bislang haben wir immer deterministische Algorithmen für unsere „hartnäckigen“ Probleme entworfen. In diesem Kapitel führen wir einen Ansatz ein, der es uns erlaubt, manchmal durch Würfeln — ein anderer Ausdruck, der gerne benutzt wird, ist Münzwürfe — „schnell“ und „einfach“ zu zumindest „im Durchschnitt“ guten zulässigen Lösungen zu kommen. Diese randomisierten Algorithmen wurden in den letzten Jahren verstärkt und sehr erfolgreich auch im Bereich der Approximationsverfahren entworfen, analysiert und eingesetzt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.6 Literatur zu Kapitel 6

  1. [AS92]
    N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, 1992.Google Scholar
  2. [AW02]
    T. Asano and D. P. Williamson. Improved approximation algorithms for MAX-SAT. Journal of Algorithms, 42:173–202, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [CFZ99]
    J. Chen, D. K. Friesen, and H. Zheng. Tight bound on Johnson’s algorithm for maximum satisfiability. Journal of Computer and System Sciences, 58:622–640, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [Fei99]
    U. Feige. Randomized rounding for semidefmite programs — Variations on the MAX CUT example. In Proc. Int. W’shops on Approximation Algorithms for Combinatorial Optimization Problems and on Randomization and Computation (RANDOM-APPROX), pages 189–196, 1999.Google Scholar
  5. [Fel70]
    W. Feller. An Introduction to Probability Theory and Applications. Wiley, New York, 1970.Google Scholar
  6. [FS02]
    U. Feige and G. Schechtman. On the optimality of the random hyperplane rounding technique for MAX CUT. Random Structures ‖ Algorithms, 20:403–140, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [GJ79]
    M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.zbMATHGoogle Scholar
  8. [GKP95]
    R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd edition, 1995.Google Scholar
  9. [GV96]
    G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, 3rd edition, 1996.Google Scholar
  10. [GW94]
    M. X. Goemans and D. P. Williamson. New 3/4-approximation algorithms for MAX SAT. SIAM Journal on Discrete Mathematics, 7:656–666, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [GW95]
    M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefmite programming. Journal of the ACM, 42:1115–1145, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [Had75]
    F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM Journal on Computing, 4:221–225, 1975.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [Joh74]
    D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences, 9:256–278, 1974.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [Kar91]
    H. Karloff. Linear Programming. Birkhäuser, Boston, 1991.zbMATHGoogle Scholar
  15. [MPS98]
    E. W. Mayr, H. J. Prömel, and A. Steger, editors. Lectures on Proof Verification and Approximation Algorithms. Springer, Berlin, 1998.zbMATHGoogle Scholar
  16. [MR99]
    S. Mahajan and H. Ramesh. Derandomizing semidefinite programming based approximation algorithms. SIAM Journal on Computing, 28:1641–1663, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [RT87]
    P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good algorithms and algorithmic proofs. Combinatorica, 7:365–374, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [SS01]
    T. Schickinger and A. Steger. Diskrete Strukturen, Band 2: Wahrscheinlichkeitstheorie und Statistik. Springer, Berlin, 2001.Google Scholar
  19. [WSV00]
    H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook on Semidefinite Programming. Kluwer, 2000.Google Scholar

Copyright information

© B.G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden 2006

Personalised recommendations