A Remark on the Formulation of Dual Programs Based on Generalized Convexity

  • Diethard Pallaschke

Abstract

In this paper we present a general concept for the formulation of the dual program which is based on generalized convexity. This is done in a purely algebraic way where no topological assumptions are made. Moreover all proofs are presented in an extreme simple way. A complete presentation of this subject can be found in the book of D. Pallaschke and S. Rolewicz [14].

Key words

Generalized Convexity Value Function Lagrange Duality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Balder EJ (1977) An extension of duality — stability relations to nonconvex optimization problems. SIAM Jour. Contr. Optim. 15:329–343CrossRefGoogle Scholar
  2. [2]
    Clarke FH (1989) Methods of dynamic and nonsmooth optimization. SIAM Regional Conference Series in Applied Mathematics, Capital City Press, Montpellier, VermontGoogle Scholar
  3. [3]
    Dolecki S (1978) Semicontinuity in constrained optimization I. Metric spaces. Control and Cybernetics 7(2):5–16Google Scholar
  4. [4]
    Dolecki S (1978b) Semicontinuity in constrained optimization Ib. Normed spaces. Control and Cybernetics 7(3):17–25Google Scholar
  5. [5]
    Dolecki S (1978c) Semicontinuity in constrained optimization II. Control and Cybernetics 7(4):51–68Google Scholar
  6. [6]
    Dolecki S, Kurcyusz S (1978) On Φ-convexity in extremal problems. SIAM Jour. Control and Optim. 16:277–300CrossRefGoogle Scholar
  7. [7]
    Dolecki S, Rolewicz S (1979b) Exact penalties for local minima. SIAM Jour. Contr. Optim. 17:596–606CrossRefGoogle Scholar
  8. [8]
    Elster KH, Nehse R (1974) Zur Theorie der Polarfunktionale. Math. Operationsforsch. und Stat. Ser. Optimization 5:3–21Google Scholar
  9. [9]
    Gill PhE, Murray W, Wright MH (1981) Practical Optimization. Academic Press, London, New York, SidneyGoogle Scholar
  10. [10]
    Kurcyusz S (1976) Some remarks on generalized Lagrangians. Proc. 7-th IFIP Conference on Optimization Technique, Nice, September 1975, Springer-VerlagGoogle Scholar
  11. [11]
    Kurcyusz S (1976b) On existence and nonexistence of Lagrange multipliers in Banach spaces. Jour. Optim. Theory and Appl. 20:81–110CrossRefGoogle Scholar
  12. [12]
    Kutateladze SS, Rubinov AM (1971) Some classes of H-convex functions and sets. Soviet Math. Dokl. 12:665–668Google Scholar
  13. [13]
    Neumann K, Morlock M (2002) Operations research, 2nd Edition (in German). Carl Hanser Verlag, MünchenGoogle Scholar
  14. [14]
    Pallaschke D, Rolewicz S (1997) Foundations of Mathematical Optimization. Mathematics and its Applications. Kluwer Acad. Publ., DordrechtGoogle Scholar
  15. [15]
    Pallaschke D, Rolewicz S (1998) Penalty and augmented Lagrangian in general optimization problems. Charlemagne and his heritage. 1200 years of civilization and science in Europe, Vol. 2 (Aachen, 1995), Brepols, Turnhout, pp. 423–437Google Scholar
  16. [16]
    Rubinov A (2000) Abstract convexity and global optimization. Non-convex Optimization and its Applications, 44. Kluwer Academic Publishers, DordrechtGoogle Scholar
  17. [17]
    Singer I (1997) Abstract convex analysis. With a foreword by A. M. Rubinov, Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New YorkGoogle Scholar

Copyright information

© Deutscher Universitäts-Verlag/GWV Fachverlage GmbH, Wiesbaden 2006

Authors and Affiliations

  • Diethard Pallaschke
    • 1
  1. 1.Institut für Statistik und Mathematische WirtschaftstheorieUniversität KarlsruheKarlsruhe

Personalised recommendations