Advertisement

Tribologische Mess- und Prüftechnik

  • Horst Czichos
  • Karl-Heinz Habig
Chapter
  • 14k Downloads

Zusammenfassung

Die tribologische Mess- und Prüftechnik, kurz als Tribometrie bezeichnet, reicht von Untersuchungen an kompletten technischen Systemen unter realen Betriebsbedingungen bis zu labormäßigen Modellprüfungen mit einfachen Probekörpern. Sie betrifft – entsprechend den in Bild 1.1 illustrierten Dimensionsbereichen der heutigen Technik – die Makrotechnik, die Mikrotechnik und die Nanotechnik. Die metrologisch-systemechnischen Grundlagen der Tribometrie sind im Kapitel 21 „Reibungs- und Verschleißdaten“ und die Anwendung der tribologischen Mess- und Prüftechnik im Kapitel 22 „Machinery Diagnostics“ dargestellt. Inhalt dieses Kapitels sind die mess- und prüftechnischen Prinzipien, Methoden und Instrumentarien.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 8

  1. Allers, W., Schwarz, A., Schwarz, U.D., and Wiesendanger, R.: A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperature. Rev. Sci. Instrum. 69 (1998) 221.Google Scholar
  2. Baugh, E. and Talke, F. E., „The Head/Tape Interface: A Critical Review and Recent Results“, Tribology Transactions, 39, 2, (1996), 306–313.Google Scholar
  3. Baumgart, P., Krajnovich D. J., Nguyen T. A., Tam A. C., „A new laser texturing technique for high performance magnetic disk devices“, IEEE Trans. on Magnetics, 31, (1995), 2946–51.Google Scholar
  4. Begelinger, A.; de Gee, A. W. J.: Thin film lubrication of sliding point contacts of AISI 52100 steel. Wear 28 (1974) 103.Google Scholar
  5. Benzing, R.; Goldblatt, I.; Hopkins, V.; Jamison, W.; Mecklenburg, K.; Peterson, M.: Friction and wear devices. Park Ridge: American Society of Lubrication Engineers, 1976.Google Scholar
  6. Bhushan, Bh., ed.: Micro/Nanotribology and Its Applications. Kluwer Academic Publishers, Dordrecht, (1997).Google Scholar
  7. Bhushan, Bh., ed.: Modern Tribology Handbook. CRC Press, Boca Raton (2001).Google Scholar
  8. Binnig, G., Rohrer, H.: Scanning tunneling microscopy. Helv. Phys. Acta 55 (1982) 726.Google Scholar
  9. Binnig, G., Quate, C.F., Gerber, C.: Atomic Force Microscope. Phys. Rev. Lett. 56 (1986) 930.Google Scholar
  10. Binnig, G., Rohrer, H.: Scanning tunneling microscopy from birth to adolescence. Rev. Mod. Phys. 59 (1987) 615.Google Scholar
  11. Boness, R. J.; Mc Bridge, S. L.; Sobczyk, M.: Wear studies using acoustic emission techniques. Tribology International 23 (1990) 291.Google Scholar
  12. Briggs, D.; Seah, M.P. (Eds): Practical Surface Analysis. John Wiley&Sons, Chichester, 1992Google Scholar
  13. Czichos, H.; Kirschke, K.: Investigations into film failure (transition point) of lubricated concentrated contacts. Wear 22 (1972) 321.Google Scholar
  14. Czichos, H.: Failure criteria in thin film lubrication: the concept of a failure surface. Tribology International 7 (1974) 14.Google Scholar
  15. Czichos, H.: A systems analysis data sheet for friction and wear tests and an outline for simulative testing. Wear 41 (1977) 45.Google Scholar
  16. Czichos, H.: Tribology – a systems approach to the science and technology of friction, lubrication and wear. Amsterdam: Elsevier 1978, p. 251.Google Scholar
  17. Czichos, H.: Systematik tribologischer Prüfungen, in: Tribologie Band 8 (Bunk, W., Hansen, J. und Haag, H., Herausgeber). Berlin: Springer, 1984, S. 9.Google Scholar
  18. Czichos, H.; Becker, S.; Lexow, J.: Multilaboratory tribotesting: Results from the Versailles Advanced Materials and Standards Programme on Wear Test Methods. Wear 114 (1987) 109.Google Scholar
  19. Czichos, H.; Becker, S.; Lexow, J.: International multilaboratory sliding wear tests with ceramic and steel (VAMAS 2nd round robin). Wear 135 (1989) 171.Google Scholar
  20. Fischer, K.-F.; Ketting, M. Woydt, M.: Ceramic component in tracks for construction equipment. Proc. 6th European ISTVS Comf. 28.-30. September 1984, Vienna, Vol. II,P. 673–695, ISS. 1022–0313.Google Scholar
  21. Fujisawa, S., Kishi, E., Sugawara, Y., and Morita, S.: Atomic-scale friction observed with a twodimensional frictional-force microscope. Phys. Rev. B, 51 (1995) 7849.Google Scholar
  22. Gervé, A.: Zur Früherkennung von Verschleißschäden und Funktionsüberwachung laufender Maschinenanlagen, in: Reibung und Verschleiß von Werkstoffen, Bauteilen und Konstruktionen (Czichos, H., Federführender Autor). Grafenau: Expert-Verlag, 1982, S. 205.Google Scholar
  23. Giessibl, F.J.: Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B,56 (1997) 16010.Google Scholar
  24. Godfrey, D.: Diagnosis of wear mechanisms, in: Wear Control Handbook (Peterson, M. B. and Winer, W. O., Editors). New York: American Society of Mechanical Engineers, 1980, p. 283.Google Scholar
  25. Gnecco, E.; Bennewitz R.; Gyalog, T.; Loppacher, Ch.; Bammerlin, M.; Meyer, E.; and Güntherodt, H.- J.: Velocity Dependence of Atomic Friction. Phys. Rev. Lett. 84 (2000) 1172.Google Scholar
  26. Grill A., „Tribology of diamondlike Carbon and related materials: an updated review“, Wear, 94-95, (1997), 507–13.Google Scholar
  27. Gui J., Marchon B., „ A Stiction model for a head-disk interface of a rigid disc drive“, J Appl. Phy., 78, (1995), 4206–17.Google Scholar
  28. Habig, K.-H.: Möglichkeiten der Modell-Verschleißprüfung. Materialprüfung 17 (1975) 358.Google Scholar
  29. Habig, K.-H.: Possibilities of model wear testing, in: Metallurgical Aspects of Wear (E. Hornbogen and K.-H. Zum Gahr, Editors). Oberursel: Deutsche Gesellschaft für Metallkunde, 1981, S. 237.Google Scholar
  30. Habig, K.-H.: Die Aussagefähigkeit von Reibungs- und Verschleißprüfungen, in: Werkstoffprüfung 1990. Berlin: Deutscher Verband für Materialforschung und -prüfung, 1990, S. 223.Google Scholar
  31. Heinke, G.: Verschleiß – eine Systemeigenschaft. Auswirkungen auf die Verschleißprüfung. Z. Werkstofftech. 6 (1975) 164.Google Scholar
  32. Heinz, R.: Betriebs- und Laborprüftechniken für reibungs- und verschleißbeanspruchte Bauteile, in: Reibung und Verschleiß von Werkstoffen, Bauteilen und Konstruktionen (Czichos, H., Federführender Autor). Grafenau: Expert-Verlag, 1982, S. 169.Google Scholar
  33. Heller, A.: Einfluss von Gefüge- und Bearbeitungsparametern auf die tribologischen Eigenschaften von Zylinderlaufbahnen aus Grauguß. Diplomarbeit September 1995, Otto-von-Guericke-Universität Magdeburg, D-39016 Magdeburg.Google Scholar
  34. Hölscher, H., Schwarz, A., Allers, W., Schwarz, U.D., and Wiesendanger, R.: Quantitative analysis of dynamic-force-spectroscopy data on graphite (0001) in the contact and noncontact regimes. Phys. Rev. B 61 (2000) 12678.Google Scholar
  35. Hölscher, H., Allers, W., Schwarz, U.D., Schwarz, A., and Wiesendanger, R.: Simulation of NC-AFM images of xenon (111). Appl. Phys. A 72 (2001) 35.Google Scholar
  36. Homola, A.M., Israelachvili, J.N., Gee, M.L., and McGuiggan: Measurement of and Relation Between the Adhesion and Friction of Two Surfaces Separated by Molecularly Thin Liquig Films. J. Tribology 111 (1989) 675.Google Scholar
  37. Hu, Y., Bogy D. B., „Dynamic stability and spacing modulation of sub-25 nm fly height sliders“, ASME J. Trib., 119, (1996), 646–52.Google Scholar
  38. Israelachvili, J.N.: Intermolecular and Sueface Forces. Academic Press, London (1992).Google Scholar
  39. Jarvis, S.P.; Oral, A.; Weihs, T.P.; Pethica, J.B.: Anovel microscope and point contact probe. Rev. Sci. Instrum. 64 (1993) 3515.Google Scholar
  40. Jarvis, S.P.; Yamada, H.; Kobayashi; K., Toda, A.; Tokumoto, H.: Normal and lateral force investigation using magnetically activated force sensors. Applied Surface Science 157 (2000) 314.Google Scholar
  41. John, P. M.: Statistical design and analysis of experiments. London: Macmillan, 1971.zbMATHGoogle Scholar
  42. Kang, H.-J., Perettie, D. J., Talke F. E., „A study of phase separation characteristics of perfluoropolyethers/ posphazene (x-1p) lubricant mixtures on hard disk surfaces“, IEEE Trans. on Magnetics, 35, 5, (1999), 2385–2387.Google Scholar
  43. Ketting,M.; Kunkel, W.; Woydt, M.: Gleiskettenbuchsen aus Keramik. Keramische Zeitschrift 48(6) 1996 494–499.Google Scholar
  44. Klaffke, D.: Fundamentals of Tribotesting. TriboteS. 6–4 (2000) 373.Google Scholar
  45. Knigge, B., Talke F. E., and P. Baumgart, „Acoustic Emission and Stiction Analysis of Laser Textured Media“, IEEE Trans. on Magn. 35, 2, (1999), 921–926.Google Scholar
  46. Kolar, D.; Dohnal, M.: Fuzzy description of ball-bearing wear. Wear 110 (1986) 35.Google Scholar
  47. Kotz, S.; Johnson, N. L.; Read, C. B.: Encyclopedia of statistical sciences. New York: Wiley, 1982, p. 359.zbMATHGoogle Scholar
  48. Krim, J.: Friction at the Atomic Scale. Scientific American Oct. 1996, 48 und Reibung auf atomarer Ebene. Spektrum der Wissenschaften Dez. 1996, 80.Google Scholar
  49. Krotil, H.-U., Stifter, Th., Waschipky, H., Weishaupt, K. Hild, S., and Marti, O.: Pulsed Force Mode: a New Method for the Investigation of Surface Properties. Surf. Interface Anal. 27 (1999) 336.Google Scholar
  50. Krotil, H.-U., Weilandt, E., Stifter, Th., Marti, O, and Hild, S.: Dynamic Friction Force Measurement with the Scanning Force Microscope. Surf. Interface Anal. 27 (1999) 341.Google Scholar
  51. Lattka, A. L.; Utz, W.: Harte Anforderungen – PCI Transient Recorder überwacht Maschinenschwingungen. Meßtechnik 6 (1990) 8.Google Scholar
  52. Lee, H. J, Lee J. K, Zubeck R., Smallen M. and Hollars D., „Properties of sputter-deposited. hydrogenated carbon films as a tribological overcoat used in rigid magnetic disks“, Sur. Coat. Tech., 54-55, (1992), 552–6.Google Scholar
  53. Lim, S. C.; Ashby, M. G.: Wear–mechanism maps. Acta Metallurg. 35 (1987) 1.Google Scholar
  54. Lüthi, R.; Meyer, E.; Howald, L.; Bammerlin, M.; Güntherodt, H.-J.; Gyalog, T.; and Thomas, H.: Friction force microscopy in ultrahigh vacuum: an atomic-scale study on KBr(001). Tribol. Lett. 1 (1995) 129.Google Scholar
  55. Mate, C.M.; McClelland, G.M.; Erlandsson, R.; Chiang, S.: Atomic-Scale Fristion of a Tungsten Tip on a Graphite Surface. Phys. Rev. Lett. 59 (1987) 1942.Google Scholar
  56. Mee, C. D. and Daniels, E. D., Magnetic Recording, McGraw-Hill Book Company, (1986).Google Scholar
  57. Mittmann, H. U.; Czichos, H.: Reibungsmessungen und Oberflächenuntersuchungen an Kunststoff- Metall-Gleitpaarungen. Materialprüfung 17 (1975) 366.Google Scholar
  58. Montgomery, D. C.: Design and analysis of experiments. New York: Wiley, 1978, p. 180.Google Scholar
  59. Mücke, W.: Zur Anwendung der statistischen Versuchsplanung in der Tribotechnik. Schmierungstechnik 11 (1980) 140.Google Scholar
  60. Perettie, D. J, Morgan T. A., Zhao Q., Kang H. J., Talke F. E., „The use of phosphazene additives to enhance the performance of PFPAE lubricants“, J. Magn. Magn., 193, (1999), 318–21.Google Scholar
  61. Persson, B.N.J., and Tossatti, E., ed.: Physics of sliding friction. Kluwer Academic Publishers, Dordrecht (1996).Google Scholar
  62. Persson, B.N.J.: Sliding friction. Springer, Berlin (1998).Google Scholar
  63. Rabinowicz, E.: Investigating a tribological failure. Wear 136 (1990) 199.Google Scholar
  64. Razim, C.; Rodrian, U.: Untersuchungen zum Schichtaufbau und Verschleißverhalten hochbelasteter, nitrierter Schraubenräder. Härt.-Tech. Mitt. 40 (1985) 141.Google Scholar
  65. Reiners, G.: Werkstoffprüfung von Oberflächen. Ingenieur-Werkstoffe 2 (1990) 57.Google Scholar
  66. Riviere, J.C.; Myhra, S.; Handbook of Surface and Interface Analysis. Methods for Problem-Solving. Marcel Dekker Inc., New York, 1998Google Scholar
  67. Sachs, L.: Statistische Methoden. Berlin: Springer, 1984.Google Scholar
  68. Salomon, G.: Failure criteria in thin film lubrication – the IRG program. Wear 36 (1976) 1.Google Scholar
  69. Santner, E.: Rechnergestützte Prüftechnik in der Tribologie. Materialprüfung 32 (1990) 18.Google Scholar
  70. Santner, E.: Reibkraftschwankungen – Quellen, Informationsquelle, Probleme. Tribologie + Schmierungstechnik 47 (2000) 19.Google Scholar
  71. Santner, E., Koehler, N.: Tribological testing of TiN-coatings in dry sliding contacts – Evaluation of an international multilaboratory project, WORLD Tribology Congress, ISBN 1-86058-109-9, 1997, p. 501Google Scholar
  72. Segieth, C.: Verschleißuntersuchungen an Raupenlaufwerken von Baumaschinen. Fortschrittberichte VDI, Reihe 1, Nr. 192. Düsseldorf: VDI-Verlag, 1990.Google Scholar
  73. Singer, I.L. and Pollock, H.M.: Fundamentals of Friction: Macroscopic and Microscopic Processes. NATO ASI Series, Kluwer Academic Publishers, Dordrecht (1992).Google Scholar
  74. Stange, K.; Henning, H.-J.: Formeln und Tabellen der mathematischen Statistik. Berlin: Springer, 1966.zbMATHGoogle Scholar
  75. Talke, F. E., „An Overview of Current Tribology Problems in Magnetic Recording“, Proceedings of the 26th Leeds-Lyon Symposium on Tribology, Elsevier Press, in press, (1999).Google Scholar
  76. Talke, F. E., „Investigation of Tape Edge Wear,“ Wear, 17, (1971), 21–32.Google Scholar
  77. Uedelhoven, W.; Franzl, M.; Guttenberger, J.: The use of automated image analysis for the study of wear particles in oil-lubricated tribological systems. Wear 142 (1991) 107.Google Scholar
  78. Unger, W.: Oberflächen und Schichtanalytik. Tagungsband zum Workshop „Bewertung und Charakterisierung technischer Oberflächen für die verarbeitende Industrie“ FDS e.V. und NEMA e.V., Bergisch Gladbach und Chemnitz, 2000Google Scholar
  79. Wahl, M. P., Lee, P. and Talke, F. E., „An Efficient Finite Element-Based Air Bearing Simulator for Pivoted Slider Using Bi-conjugate Gradient Algorithms“, Tribology Transactions, 39, 1, (1996), 130–138.Google Scholar
  80. Weingraber, H. von; Abou-Aly, M.: Handbuch Technische Oberflächen. Braunschweig: Vieweg, 1989.Google Scholar
  81. Weissner, S. and Talke, F. E., „A New Finite-Element Based Suspension Model Including Displacement Limiters for Load-Unload Simulations“, in press, Journal of Tribology, (2001).Google Scholar
  82. Woydt, M.; Kelling, N.: Characterization of the tribological behaviour of lubricants and materials for the tribosystem „piston ring/Cylinder Liner. STP 1404 „Bench testingof industrial fluid lubrication and wear properties used in machinery applications“,ASTM D2, 2001.Google Scholar
  83. Zhao, Q. and F. E. Talke, „Effect of Environmental Conditions on the Stiction Behavior of Laser Textured Hard Disk Media“, Tribology International 33, (2000), 281–287.Google Scholar
  84. Zhao, Q. and Talke, F. E., „Stiction and Deformation Analysis of Laser Textured Media with Crater- Shaped Laser Bumps“, Tribology Transactions 43, 1, (2000),1–8.Google Scholar
  85. Zeng, Q. H. and Bogy, D.B., „A Dimplified 4-DOF Suspension Model for Dynamic Load-Unload Simulation and its Application“, J. of Tribology, Trans. ASME, vol. 122, no.1, (2000), 274–279.Google Scholar

Kapitel 8.4

  1. Berg, S.; Prellberg, Th.; Johannsmann, D. : Nonlinear contact mechanics based on ring-down experiments with quartz crystal resonators. Rev. Sci. Instrum. 74 (2003) 118.Google Scholar
  2. Bhushan Bh.; Gupta, B.K.; Van Cleef, G.W.; Capp, C.; Coe, J.V.: Fullerene (C60) Films for Solid Lubrication. Tribology Transactions.Google Scholar
  3. Bhushan, Bh., Israelachvili, J. N.; Landmann, U. : Friction, Wear and Lubrication at the Atomic Scale. Nature. 374 (1995) 607.Google Scholar
  4. Bhushan, B. (ed.): Springer Handbook of Nanotechnology, Berlin Heidelberg, Springer 2004Google Scholar
  5. Binnig, G., Rohrer, H.; Gerber, Ch.; Weibel, E.: Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40 (1982) 178Google Scholar
  6. Binnig, G., Rohrer, H.: Vacuum Tunnel Microscope. Helv. Phys. Acta 55 (1982) 128.Google Scholar
  7. Binnig, G., Quate, C.F., Gerber, C.: Atomic Force Microscope. Phys. Rev. Lett. 56 (1986) 930.Google Scholar
  8. Bonse, J., Sturm, H., Schmidt, D., Kautek, W.: Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Appl. Phys. A 71 (2000) 657.Google Scholar
  9. Burnham, N.A., Chen, X., Hodges, C.S., Matei, G.A., Thoreson, E.J., Roberts, C.J., Davies, M.C., Tendler, S.J.B.: . Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14 (2003) 1.Google Scholar
  10. Butt, H.-J.; Cappella, B., Kappl, M.: Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 59 (2005) 1–152Google Scholar
  11. Cannara, R.J.; Brukman, M.J.; Cimatu, K.; Sumant, A.V.; Baldelli, S.; Carpick, R.W.: Nanoscale Friction Varied by Isotopic Shifting of Surface Vibrational Frequencies. Science 318 (2007) 780.Google Scholar
  12. Colburn, T. J.; Leggett, G. J.: Influence of solvent environment and tip chemistry on the contact mechanics of tip-sample interactions in friction force microscopy of self-assembled monolayers of mercaptoundecanoic acid and dodecanethiol. Langmuir 23 (2007) 4959.Google Scholar
  13. Colchero, J.; Luna, M.; Baro, A.M.: Lock-in technique for measuring friction on a nanometer scale. Appl. Phys. Lett. 68 (1996) 2896.Google Scholar
  14. Dinelli, F.; Biswas, S.K.; Briggs, G.A.D; Kolosov, O.V.: Ultrasound induced lubricity in microscopic contact. Appl. Phys. Lett. 71 (1997) 1177Google Scholar
  15. Elias, H.-G.: Makromoleküle, Physikalische Strukturen und Eigenschaften, Bd.2, Weinheim, Wiley-VCH 2001Google Scholar
  16. Feynman, R.P.: There's Plenty of Room at the Bottom - An Invitation to Enter a New Field of Physics. Vortrag, Jahrestagung der American Physical Society . California Institute of Technology (Caltech), Pasadena, USA, 29.12.1959. www.zyvex.com/nanotech/feynman.html
  17. Frechette, J.; Vanderlick, T.K.: Making, Breaking, and Shaping Contacts by Controlling Double Layer Forces. Ind. Eng. Chem. Res. 48 (2009) 2315.Google Scholar
  18. Gao, J.P.; Luedtke, W.D.; Gourdon, D.; Ruths, M.; Israelachvili, J.N.; Landman, U.: Frictional forces and Amontons' law: from the molecular to the macroscopic scale. J. Phys. Chem. 108 (2004) 3410.Google Scholar
  19. Gee, M.L.; McGuiggan, P.M.; Israelachvili, J.N.; Homola, A.M.: Liquid to solid-like transitions of molecular thin films under shear. J. Chem. Phys. 93 (1990) 1895.Google Scholar
  20. Geike, T.: Theoretische Grundlagen eines schnellen Berechnungsverfahrens für den Kontakt rauer Oberflächen. Dissertation TU Berlin (2008). www.opus.kobv.de/tuberlin/volltexte/2008/1748/
  21. Hembacher, S., Giessibl, F.J., Mannhart, J.: Force microscopy with light-atom probes. Science 305 (2004) 380.Google Scholar
  22. Hinrichsen, G.; Sturm, H.; Schulz, E.; Munz, M.: Bericht zum Teilprojekt A1 im Sfb605 “Elementare Reibereignisse”, G.-P. Ostermeyer u. S. Hess (Hrsg.), TU Berlin (2001), S. 60. s. www.2.tuberlin.de/sfbs/sfb605/tp_a1.html
  23. Homola, A.M.; Israelachvili, J.N.; Gee, M.L.; McGuiggan, P.M.: Measurement of and relation between the adhesion and friction of two surfaces separated by molecularly thin liquid-films. J. Tribology 111 (1989) 675.Google Scholar
  24. Israelachvili, J.N.; McGuiggan, P.M.: Adhesion and short-range forces between surfaces. Part I: New apparatus for surface force measurements. J. Mater. Res. 5 (1990) 2223.Google Scholar
  25. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, London (1991).Google Scholar
  26. Johnson, K.L.; Kendall, K.; Roberts,A.D.: Surface energy and contact of elastic solids. Proc. R. Soc. London Ser. A 324 (1971) 301.Google Scholar
  27. Johnson, K.L.; Greenwood, J.A.: An adhesion map for the contact of elastic spheres. J. Coll. Interf. Sci. 192 (1997) 326.Google Scholar
  28. Kageshima, M.; Ogisoa, H.; Tokumoto, H.: Lateral forces during manipulation of a single C60 molecule on the Si(0 0 1)-2×1 surface. Surface Science 517(2002) L557.Google Scholar
  29. Krätschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R.: Solid C60: a new form of carbon. Nature 347 (1990) 354Google Scholar
  30. Krim, J.: QCM tribology studies of thin adsorbed films. Nano Today 2 (2007) 38Google Scholar
  31. Krotil, H.U., Weilandt, E., Stifter, T., Marti, O., Hild, S.: Dynamic friction force measurement with the scanning force microscope. Surf. Interf. Anal. 27 (1999) 341.Google Scholar
  32. Li, Q., Kim, K.-S., Rydberg, A.: Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system. Rev. Sci. Instrum. 77 (2006) Art.No. 065105Google Scholar
  33. Littmann, W.; Storck, H.; Wallaschek, W.: Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations. Arch Appl Mech 71 (2001) 549.Google Scholar
  34. Mark, J.E. (ed.): Physical Properties of Polymers Handbook, Woodbury, NY, U.S.A., AIP Press 1996.Google Scholar
  35. Martsinovich, N.; Kantorovich, L.: Modelling the manipulation of C60 on the Si(001) surface performed with NC-AFM. Nanotechnology 20 (2009) 135706.Google Scholar
  36. Mate, C.M.; McClelland, G.M.; Erlandsson, R.; Chiang, S.: Atomic-Scale Friction of a Tungsten Tip on a Graphite Surface. Phys. Rev. Lett. 59 (1987) 1942.Google Scholar
  37. McGuiggan, P.M.; Gee, M.L.; Yoshizawa, H.; Hirz, S.J.; Israelachvili, J.N.: Friction studies of polymer lubricated surfaces. Macromolecules 40 (2007) 2126.Google Scholar
  38. Meyer, E.; Overney, R.M.; Frommer, J.; 1995. Handbook on Micro/Nano Tribology. [Hrsg.] B. Bushan. Boca Raton : CRC Press, 1995. S. 223.Google Scholar
  39. Meyer, E., Lüthi, R., Howald, L., Bammerlin, M., Guggisberg, M., Güntherodt, H.-J.: Site-specific friction force spectroscopy. J. Vac. Sci. Technol. B 14 (1996) 1285.Google Scholar
  40. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457 (2009) 1116.Google Scholar
  41. Munz, M.; Schulz, E.; Sturm, H.: Use of scanning force microscopy studies with combined friction, stiffness and thermal diffusivity contrasts for microscopic characterization of automotive brake pads. Surf. Interf. Anal. 33 (2002) 100.Google Scholar
  42. Munz, M., Cappella, B., Sturm, H., Geuss, M.: Materials contrasts and Nanolithography Techniques in Scanning Force Microscopy (SFM) and their application to polymers and polymer composites. Adv. Polym. Sci. 164 (2003) 87.Google Scholar
  43. Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67 (1996) 3298.Google Scholar
  44. Painter, P.C.; Coleman, M.M.: Fundamentals of Polymer Science, 2nd edition, Lancaster, PA, U.S.A.: Technomic Publishing Company, 1998.Google Scholar
  45. Perssons, B. N. J.: Sliding Friction: Physical Principles, Applications. Berlin Heidelberg : Springer, 1998.Google Scholar
  46. Pohlmann, R.; Lehfeldt, E.: Influence of ultrasonic vibration on metal friction. Ultrasonics 4 (1966) 178.Google Scholar
  47. Popov, V.: Kontaktmechanik und Reibung: Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation. Berlin Heidelberg: Springer, 2009.zbMATHGoogle Scholar
  48. Prunici, P., Hess, P.: Quantitaive characterisation of crosstalk effects for friction force microscopy with scan-by-probe SPMs. Ultramicorscopy 108 (2008) 642.Google Scholar
  49. Reinstädtler, M.; Kasai, T.;Rabe, U.; Bhushan, B., Arnold, W.: Imaging and measurement of elasticity and friction using the TR mode. J. Phys. D: Appl. Phys. 38 (2005) R269.Google Scholar
  50. Scheel, H.J.; Binnig, G.; Rohrer, H.; Atomically flat LPE-grown facets seen by Scanning Tunneling Microscopy. J. Cryst. Growth 60 (1982) 199Google Scholar
  51. Sheiko, S.S., Möller, M., Reuvekamp, E.M.C.M., Zandbergen, H.M.: Calibration and evaluation of Scanning-Force-Microscopy Probes. Phys. Rev. B 48 (1993) 5675.Google Scholar
  52. Socoliuc, A.; Gnecco, E.; Maier, S.; Pfeiffer, O.; Baratoff, A.; Bennewitz, R.; Meyer, E.: Atomic-scale control of nanometer-sized contacts. Science 313 (2006) 207.Google Scholar
  53. Song, Y., Bhushan, B.: Atomic force microscopy dynamic modes: modeling and applications. J. Phys.: Condens. Matter 20 (2008) Art. No. 225012Google Scholar
  54. Steiner, M.; Failla, A.V.; Hartschuh, A.; Schleifenbaum, F.; Stupperich, C.; Meixner, A.J.: Controlling molecular broadband-emission by optical confinement. New J. Phys. 10 (2008) 123017.Google Scholar
  55. Sturm, H.; Schulz, E.: Atomic force microscopy with simultaneous a.c. conductivity contrast for the analysis of carbon fibre surfaces. Composites Part A 27A (1996) 677.Google Scholar
  56. Sturm, H.: Scanning force microscopy experiments probing micromechanical properties on polymer surfaces using harmonically modulated friction techniques - I. Principles of operation. Macromol. Symp. 147 (1999) 249Google Scholar
  57. Sturm, H., Schulz, E., Munz, M.: Scanning force microscopy experiments probing micromechanical properties on polymer surfaces using harmonically modulated friction techniques - II. Investigations of heterogeneous systems. Macromol. Symp. 147 (1999) 259Google Scholar
  58. Sturm, H.: Modulated Lateral Force Microscopy (MLFM): A Scanning Force Microscopy tool for surface analysis and modification. Proc. 2nd Vienna Intern. Conf. Micro/Nano-Tech., Wien 2007, p. 143.Google Scholar
  59. Ternes; M.; Lutz, C.P.; Hirjibehedin, C.F.; Giessibl, F.J.; Heinrich, A.J.: The force needed to move an atom on a surface. Science 319 (2008) 1066.Google Scholar
  60. Tocha, E., Stefański, E., Schönherr, H., Vancso, G.J.: Development of a high velocity accessory for atomic force microscopy-based friction measurements. Rev. Sci. Instrum. 76 (2005) Art.No. 083704.Google Scholar
  61. Tocha, E., Schönherr, H., Vancso, G.J.: Surface relaxations of poly(methyl methacrylate) assessed by friction force microscopy on the nanoscale. Soft Matter. 5 (2009) 1489.Google Scholar
  62. Varenberg, M., Etsion, I., Halperin, G.: An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 74 (2003) 3362.Google Scholar
  63. Vives, G.; Tour, J.M.: Synthesis of Single-Molecule Nanocars. Acc. Chem. Res. 42 (2009) 473.Google Scholar
  64. Wiesendanger R., Anselmetti D.: STM on layered materials. In: Scanning Tunneling Microscopy I, Wiesendanger, R. und Güntherodt, H.-J. (Hrsg.), Springer Series in Surface Science Vol. 20, Springer-Verlag, Berlin (1992) p. 131Google Scholar
  65. Zappone, B.; Rosenberg, K.J.; Israelachvili, J. N.: Role of nm roughness on the adhesion and friction of a rough polymer surface and a molecularly smooth mica surface. Tribology Letters 26 (2007) 191.Google Scholar
  66. Zhang, P.; Lu, J.; Xue, Q.; Liu, W.: Microfrictional Behavior of C60 Particles in Different C60 LB Films Studied by AFM/FFM. Langmuir 17 (2001) 2143.Google Scholar
  67. Zykova-Timan, T., Ceresoli, D., Tosatti, E.: Peak effect versus skating in high-temperature nanofriction. Nature Materials 6 (2007) 230.Google Scholar

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2010

Authors and Affiliations

  • Horst Czichos
  • Karl-Heinz Habig

There are no affiliations available

Personalised recommendations