Advertisement

Hochtemperaturtribologie

  • Horst Czichos
  • Karl-Heinz Habig
Chapter
  • 14k Downloads

Zusammenfassung

Die Temperatur ist eine fundamentale Beanspruchungs- bzw. Einflussgröße für alle tribologischen Systeme. In herkömmlichen Tribosystemen, wie z. B. Gleitlagern, führt normalerweise ein flüssiger Zwischenstoff die Reibungswärme weitgehend aus dem Reibkontakt ab, senkt die Reibungszahlen und schützt vor adhäsiven Verschleißmechanismen. Mit den thermischen Stabilitätsgrenzen flüssiger Schmierstoffe ergeben sich unter Einbeziehung der polymeren Werkstoffe obere Anwendungstemperaturen von etwa 400 °C. Hochtemperaturtribologie ist die Tribologie von Ingenieurwerkstoffen und technischen Systemen oberhalb dieser Grenze.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 18

  1. Berger, L.-M., S. Saaro und M. Woydt: Reib-/Gleitverschleiß von thermisch gespritzten Hartmeallschichten Jahrbuch Oberflächentechnik 2007, Band 63, Herausgeber: R. Suchentrunk.Bad Saulgau: Eugen G. Leuze Verlag, 2007, S. 242–267 (ISBN 978-3-87480-234-5)Google Scholar
  2. Berns, H. and A. Fischer: Tribological stability of metallic materials at elevated temperatures. WEAR 162-164 (1993) 441–449CrossRefGoogle Scholar
  3. Buckley, D.H.: Friction characteristics in vacuum of single and polycrystalline aluminium oxide in contact with themselves and with various metals, ASLE Transactions 10, (1967)134–145Google Scholar
  4. Crook, P.: The development of a series of wear resistant materials with properties akin to those of the cobalt-chromium alloys, Proc. Int. Conf. Wear of Materials, 1981, Vol. I, p. 202–209Google Scholar
  5. Gienau, M., N. Kelling, N. Köhler and M. Woydt: Ultra-Hightemperature-Tribometer up to 1600 °C. Ceramic Engineering and Science Proceedings, 2004, Vol. 25, issue 4, p. 333–339, ISBN 0196-6219Google Scholar
  6. Havstad, P.H., I.J. Garwin and W.R. Wade, A ceramic insert uncooled diesel engine, SAE 860447Google Scholar
  7. Hong, H., R.F. Hochman and T.F.J. Quinn: A new approach to the oxidational theory of mild wear, STLE Transactions, 31/1 (1987) 71–75Google Scholar
  8. Inman, I.A., S.R. Rose and P.K. Datta: Studies of high temperature sliding wear of metallic dissimilar interfaces II: Incoloy MA956 versus Stellite 6. Tribology International 39 (2006) 1361–1375CrossRefGoogle Scholar
  9. Klaffke, D., T. Carstens and A. Bernerji: Influence of grain refinement on the high temperature fretting behaviour of IN 738 LC. WEAR, Vol. 160 (1993,) 361–366CrossRefGoogle Scholar
  10. Magnéli, A.: Structures of the ReO3-type with recurrent dislocations of atoms: „Homologous series“ of molybdenum and tungsten oxides, Acta Crystallographica, 6, (1953) 495–500CrossRefGoogle Scholar
  11. Mörgenthaler, K.D.: Keramikteile im Motorenbau, Anforderungen und Eigenschaften. In: mechanische Eigenschaften keramischer Konstruktionswerkstoffe, DGM Informationsgesellschaft, 1993, ISBN 3- 88355-194-5, p. 17–28Google Scholar
  12. Scott, F.H.: The influence of oxidation on the wear of metals and alloys. New Directions in Tribology: Plenary and invited papers presented at the First World Tribology Congress, London, UK, 08.-12. September 1997, Editor: I.M. Hutchings, ISBN 1-86058-099-8, pp.Google Scholar
  13. Semenov, A.P: Tribology at high temperatures Tribology International, 28/1 (1995) 45–49.CrossRefGoogle Scholar
  14. Sliney, H.E.: Solid lubricant materials for high temperatures – a review. Tribology International, October 1982, p. 303–315Google Scholar
  15. Skopp, A. and M. Woydt: Ceramic-ceramic composite materials with improved friction and wear properties. Tribology International, 25/11 (1992) 61–70CrossRefGoogle Scholar
  16. Spaltmann D., M. Hartelt and M. Woydt: Triboactive Materials for Dry Reciprocating Sliding Motion at Ultrahigh-Frequency. WEAR 266/1-2 (2009) 67–174Google Scholar
  17. Thoma. M.: High wear resistance at high temperatures by Co+Cr2O3 electrodeposited composite coating. WEAR, 162-164 (1993) 1045–1047CrossRefGoogle Scholar
  18. Tkachenko, Y. G., V.N. Klimenko, I.N. Gorbatov, V.A. Maslyuk and D.Z. Yurchenko: Friction and wear of chromium carbide nickel alloys at high temperatures of 20–1.000 °C. Soviet Powder Metallurgy and Metal Ceramics, 17/11 (1978) 864–867CrossRefGoogle Scholar
  19. Woydt, M.: Tribological characteristics of polycrystalline titaniumdioxides with planar defects. Tribology Letters, 2000, Vol. 8, No. 2-3, Special issue „Lubricious Oxides“, p. 117–130Google Scholar
  20. Woydt, M. , K.-H. Habig: High temperature tribology of ceramics. Tribology International, 22/22 (1989) 75–88CrossRefGoogle Scholar
  21. Woydt, M., J. Kadoori, H. Hausner und K.-H. Habig: Unlubricated tribological behaviour of various zirconia based ceramics.. J. of European Ceramic Society 7/4 (1991) 123–130Google Scholar
  22. Woydt, M., A. Skopp, I. Dörfel and K. Witke: Wear engineering oxides/Anti-wear oxides. Wear 218/1 (1998) 84–95CrossRefGoogle Scholar
  23. Yarim, R. M. Woydt und R- Wäsche: Gleitverschleißverhalten von SiC-TiC-TiB2-Verbundwerkstoffen bis 800 °C und 4 m/s. Tribologie&Schmierungstechnik, 50/2 (2003) 5–15Google Scholar

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2010

Authors and Affiliations

  • Horst Czichos
  • Karl-Heinz Habig

There are no affiliations available

Personalised recommendations