Advertisement

Vakuumtribologie

  • Horst Czichos
  • Karl-Heinz Habig
Chapter
  • 14k Downloads

Zusammenfassung

Vakuumbedingungen stellen an die Tribologie besondere Anforderungen. Normalerweise haben unter atmosphärischen Bedingungen die Wirkflächen tribologisch beanspruchter Bauteile bei der Festkörperreibung im „Trockenlauf“ die Möglichkeit, durch chemische Reaktionen mit dem gasförmigen Umgebungsmedium reibungs- und verschleißmindernde Deckschichten zu bilden. Dies ist im Vakuum jedoch nicht möglich, so dass – wie in Kapitel 4.3.1 für die Reibung und in Kapitel 5.3.3 für den Verschleiß dargestellt – Adhäsionsmechanismen in den Kontaktgrenzflächen zu Funktionsstörungen und zum Versagen tribotechnischer Systeme führen können.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 16

  1. Buckley, D. H.: Friction, Wear and Lubrication in Vacuum. NASA Scientific and Technical Publication SP-277. Washington: 1971Google Scholar
  2. De Barros Bouchet, M.I.; Le Mogne, Th.; Martin, J.M.; Vacher, B.: Lubrication of Carbon Coatings with MoS2 Single Sheet Formed by MoDTC and ZDDP Lubricants, Lub. Sci. 18 (2006) 141–149Google Scholar
  3. Donnet, C.; Martin, J.-M.; Le Mogne, Th.; Belin, M.: Super Low Friction of MoS2-Coatings in Various Environments, Tribol. Int. 29 (1996) 123–128Google Scholar
  4. Donnet, C.; Fontaine, J.; Le Mogne, T.; Belin, M.; Héau, C.; Terrat, J.P.; Vaux, F.; Pont, G.: Diamondlike carbon-based funktionally gradient coatings for space tribolgy, Surf. Coat. Technol. 120-121 (1999) 548–554CrossRefGoogle Scholar
  5. Dube, M.J.; Bollea, D.; Jones Jr., W.R.; Marchetti, M.; Jansen, M.J.: A New Synthetic Hydrocarbon Liquid Lubricant for Space Applications, Tribol. Lett. 15 (2003), 3–8Google Scholar
  6. Endrino, J.L.; Nainaparampil, J.J.; Krzanowski, J.E.: Microstructure and Vacuum Tribology of TiC-Ag Composite Coatings deposited by Magnetron Sputtering-Pulsed Laser Deposition, Surf. Coat. Technol. 157 (2002) 95–101CrossRefGoogle Scholar
  7. Friedrich, K,; Lu, Z.; Häger, A.M.: Overview on polymer composires for friction and wear application, Theor. Appl. Fract. Mech. 19 (1993), 1–11CrossRefGoogle Scholar
  8. Fontaine, J,; Donnet, C.; Erdemir, A.: Fundamentals of the Tribology of DLC Coatings, Springer US, 2008Google Scholar
  9. Gamulya, G.D; Dobrovolskaya, G.V.; Lebedeva, I.L.; Yukhno, T.P.: General Reguarities of Wear in Vacuum for Solid Film Lubricants Formulated with Lamellar Materials, Wear 93 (1984), 319–332CrossRefGoogle Scholar
  10. Gardos, M.N.: Self-Lubricating Composites for Extreme Environmental Conditions. In Friction and Wear of Polymer Composites (Friedrich, K.), Composites Materials Series, (Pipes, R.B.), Elsevier New York (1986), Vol. 1, 397–447Google Scholar
  11. Gasparotto, M.; Elio, F.; Heinemann, B.; Jaksic, N.; Mendelevitch, B.; Simon-Weidner, J.; Streibl, B.: The WENDELSTEIN 7-X Mechanical Structure Support Elements: Design and Tests, Fusion Engineering and Design 74 (2005) 161–165CrossRefGoogle Scholar
  12. Gellman, A.J.; Ko, J.S.: The Current Status of Tribological Surface Science, Tribol. Lett. 10 (2001), 39–44Google Scholar
  13. John, P.J.; Cutler, J.N.; Sanders, J.H.: Tribological Behaviour of a Multialkylated Cyclopentane Oil under Ultrahigh Vacuum Conditions, Tribol. Lett. 9 (2001) 167–173Google Scholar
  14. Johnson, R.L.; Anderson, W.J: Summara of Lubrication Problems in Vacuum Environment, Proc. USAF Aerospace Fluids and Lubricants Conf. 16.-19. 04.1963, San Antonio, USAGoogle Scholar
  15. Jones, W.R.; Jansen, M.J.:Space Tribology, NASA/TM-2000-209924 (2000)Google Scholar
  16. Jousten, K. (Hrsg.): Wutz Handbuch Vakuumtechnik: Theorie und Praxis, Wiesbaden: Vieweg, 2006Google Scholar
  17. Kellogg, L.G.; Giles, S.: Ultra-High Vacuum and High-Temperature Friction and Self-Welding Facilities, Trans. 9th Nat. Vac. Symp. Am.Vac. Soc, 1962Google Scholar
  18. Kitsunai, H.; Hokkirigawa, K.: Transistions of microscopic wear mode of silicon carbide coatings by chemical vapour deposition during repeated sliding observed in a scanning electron microscope tribosystem, Wear 185 (1995) 9–15CrossRefGoogle Scholar
  19. Krzanowski, J.E.; Endrino, J.L.; Nainaparampil, J.J.; Zabinski, J.: Composite Coatings Incorporating Solid Lubricant Phases, J. Mat. Eng. and Perf. 13 (2004) 439–444CrossRefGoogle Scholar
  20. Martin, J.M.; Le Mogne, Th.; Boehm, M.; Grossiord, C.: Tribochemistry in the analytical UHV tribometer, Tribol. Int. 32 (1999) 617–626Google Scholar
  21. McFAdden, C.F.; Gellman, A.J.: Recent Progress in Ultrahigh Vacuum Tribometry, Tribol. Lett. 4 (1998), 155–161Google Scholar
  22. Min, S.; Inasaki, I.; Fujimura, S.; Wada, T.; Suda, S.; Wakabayashi, T.: A Study on Tribology in Minimal Quantity Lubrication Cutting, CIRP Annals – Manufacturing Technology 54 (2005), 105–108CrossRefGoogle Scholar
  23. Miyoshi, K.: Considerations in vacuum tribology (adhesion, friction, wear, and solid lubrication in vacuum). Tribol. Int. 32 (1999), 605–616Google Scholar
  24. Onate, J.I.; Brizuela, M.; Bausa, M.; Garcia, A.; Braceras, I.: Vacuum Tribology Testing of Alloyed MoS2 Films at VTM Model of TriboLAB, Proc. 10th European Space Mechanisms and Tribology Symposium, 24-26 Sept. 2003, San Sebastian, SpainGoogle Scholar
  25. Roberts, E.W.: Thin Solid Lubricant Films in Space, Tribol. Int. 23 (1990) 95–104Google Scholar
  26. Rusanov, A.; Fontaine, J.; Martin, J.-M.; Le Mogne, T.; Nevshupa, R.: Gas desorption during friction of amorphous carbonf ilms. J. of Physics: Conf. Series 100 (2008) 082050CrossRefGoogle Scholar
  27. Sanders, J. H., Cutler, J. N., Miller, J. A., Zabinski, J. S.: In vacuuo tribological investigations of metal, ceramic and hybrid interfaces for high-speed spacecraft bearing applications. Tribol. Int, 32 (2000), 649–659CrossRefGoogle Scholar
  28. Scherge, M.; Li, X.; Schaefer, J.A.: The Effect of Water on Friction of MEMS, Tribol. Lett. 6 (1999), 215–220Google Scholar
  29. Sun, X.J.; Li, J.G.: Tribological Characterisation of Electrodeposited Nickel-Titania Nanocomposite Coatings Sliding Against Silicon Nitride in High Vacuum, Surf. Eng. 24 (2008) 236–239MathSciNetGoogle Scholar
  30. Suzuki, A.; Shinka, Y.; Masuko, M.: Tribological Characteristics of Imidazolium-based Room Temperature Ionic Liquids under High Vacuum, Tribol. Lett. 27 (2007) 307–313Google Scholar
  31. Takano, A.: Tribology-related space mechanism anomalies and the newly construc-ted high-vacuum mechanism test facilities in NASDA. TRIBOL INT, Bd. 32 (1999), S. 661–671CrossRefGoogle Scholar
  32. Theiler, G.; Gradt, Th.: Tribological Behaviour of PEEK Composites in Vacuum Environment. Proc. 12th European Space Mechanisms and Tribology Symposium (ESMATS 2007), Liverpool, UK, 2007Google Scholar
  33. Theiler, G.; Gradt, Th.; Banova, Z.; Schlarb, A.K.: PEEK-Komposite für Reibsysteme in der Vakuumtechnik, Tribologie u. Schmierungstechnik 55 (5/2008), 25–30Google Scholar
  34. Van Rensselar, J.: Aerospace Lubricants: Solid is essential in every sense, Tribology & Lubrication Technology, 3 2009, 42–52Google Scholar
  35. Zum Gahr, K.-H.: Microstructure an Wear of Materials,. Amsterdam: Elsevier, 1987Google Scholar

Copyright information

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2010

Authors and Affiliations

  • Horst Czichos
  • Karl-Heinz Habig

There are no affiliations available

Personalised recommendations