Advertisement

Lernen durch Verstäarkung (Reinforcement Learning)

  • Wolfgang Ertel

Alle bisher beschriebenen Lernverfahren arbeiten mit Lehrer. Sie gehören also zur Klasse des Supervised Learning. Beim Lernen mit Lehrer soll der Agent anhand von Trainingsdaten eine Abbildung der Eingabevariablen auf die Ausgabevariablen lernen. Wichtig ist hierbei, dass für jedes einzelne Trainingsbeispiel sowohl alle Werte der Eingabevariablen als auch alle Werte der Ausgabevariablen vorgegeben sind. Man braucht eben einen Lehrer, beziehungsweise eine Datenbank, in der die zu lernende Abbildung für genügend viele Eingabewerte näherungsweise definiert ist. Einzige Aufgabe des maschinellen Lernverfahrens ist es, das Rauschen aus den Daten herauszufiltern und eine Funktion zu finden, die auch zwischen den gegebenen Datenpunkten die gesuchte Abbildung gut approximiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Friedr. Vieweg & Sohn Verlag | GWV Fachverlage GmbH 2008

Authors and Affiliations

  • Wolfgang Ertel

There are no affiliations available

Personalised recommendations