Advertisement

Attraktoren

Chapter
  • 4.3k Downloads

Auszug

In der qualitativen Analyse der Lösungen von Differentialgleichungen und dynamischer Systeme ist das Langzeitverhalten oft von zentraler Bedeutung. Wir haben dies bereits in den Kapiteln über Stabilität gesehen, in denen wir untersucht haben, ob Lösungen ϕ t (x) für t → ∞ gegen ein Gleichgewicht konvergieren (asymptotische Stabilität), in der Nähe verbleiben (Stabilität) oder sich von dem Gleichgewicht entfernen (Instabilität). In diesem Kapitel greifen wir das Konzept der asymptotischen Stabilität wieder auf, wenden dies aber auf allgemeine Mengen an Stelle von Gleichgewichtslösungen an. Dies führt zur Definition der asymptotisch stabilen Menge und des Attraktors, der eine besondere Form der asymptotisch stabilen Menge darstellt. Insbesondere werden wir sehen, dass Attraktoren gerade diejenigen Teilbereiche des Zustandsraumes charakterisieren, in denen sich das Langzeitverhalten der Lösungen — soweit sie nicht unbeschränkt wachsen — abspielt. Während Methoden zur Berechnung von Attraktoren über den Umfang dieses einführenden Buches hinausgehen, werden wir abschließend zumindest eine Technik kennen lernen, mit der Gebiete im Zustandsraum bestimmt werden können, in denen sich Attraktoren befinden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden 2009

Personalised recommendations