Advertisement

Schließen mit Unsicherheit

Chapter
  • 15k Downloads

Zusammenfassung

Dass eine zweiwertige Logik beim Schließen im Alltag zu Problemen führt, haben wir in Abschnitt 4 an Hand des Tweety-Problems aufgezeigt. In diesem Beispiel führen die Aussagen Tweety ist ein Pinguin, Alle Vögel können fliegen und Pinguine sind Vögel zu der Folgerung Tweety kann fliegen. Interessant wäre zum Beispiel eine Sprache, in der es möglich ist, die Aussage Fast alle Vögel können fliegen zu formalisieren und darauf dann Inferenzen durchzuführen. Die Wahrscheinlichkeitsrechnung stellt hierfür eine bewährte Methode bereit, denn durch die Angabe eines Wahrscheinlichkeitswertes lässt sich die Unsicherheit über das Fliegen von Vögeln gut modellieren. Wir werden zeigen, dass etwa eine Aussage wie 99% aller Vögel können fliegen zusammen mit Wahrscheinlichkeitslogik zu korrekten Schlüssen führt.

Copyright information

© Springer Fachmedien Wiesbaden 2013

Authors and Affiliations

  1. 1.Institut für Künstliche IntelligenzHochschule Ravensburg-WeingartenWeingartenDeutschland

Personalised recommendations