Skip to main content

Homological algebra for Schwartz algebras of reductive p-adic groups

  • Chapter
Noncommutative Geometry and Number Theory

Part of the book series: Aspects of Mathematics ((ASMA))

Abstract

Let G be a reductive group over a non-Archimedean local field. Then the canonical functor from the derived category of smooth tempered representations of G to the derived category of all smooth representations of G is fully faithful. Here we consider representations on bornological vector spaces. As a consequence, if G is semi-simple, V and W are tempered irreducible representations of G, and V or W is square-integrable, then Ext n G (V, W) ≅ 0 for all n ≥ 1. We use this to prove in full generality a formula for the formal dimension of square-integrable representations due to Schneider and Stuhler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anne-Marie Aubert and Roger Plymen, Plancherel measure for GL(n, F) and GL(m, D): explicit formulas and Bernstein decomposition, J. Number Theory 112 (2005), 26–66. MR2131140

    Article  MATH  MathSciNet  Google Scholar 

  2. Hyman Bass, Euler characteristics and characters of discrete groups, Invent. Math. 35 (1976), 155–196. MR0432781 (55 #5764)

    Article  MATH  MathSciNet  Google Scholar 

  3. J. N. Bernstein, Le “centre” de Bernstein, 1–32, Edited by P. Deligne. MR771671 (86e:22028)

    Google Scholar 

  4. Martin R. Bridson and Andre Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, 1999, ISBN 3-540-64324-9. MR1744486 (2000k:53038)

    Google Scholar 

  5. F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. (1972), 5–251. MR0327923 (48 #6265) (French)

    Google Scholar 

  6. Heath Emerson and Ralf Meyer, Dualizing the coarse assembly map, J. Inst. Math. Jussieu (2004), http://arxiv.org/math.OA/0401227 (to appear).

    Google Scholar 

  7. Alexander Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., vol. 16, 1955. MR0075539 (17,763c) (French)

    Google Scholar 

  8. Henri Hogbe-Nlend, Complétion, tenseurs et nucléarité en bornologie, J. Math. Pures Appl. (9) 49 (1970), 193–288. MR0279557 (43 #5279) (French)

    MATH  MathSciNet  Google Scholar 

  9. _____, Bornologies and functional analysis, North-Holland Mathematics Studies, vol. 26, North-Holland Publishing Co., Amsterdam, 1977, ISBN 0-7204-0712-5. MR0500064 (58 #17774)

    Google Scholar 

  10. James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990, ISBN 0-521-37510-X. MR1066460 (92h:20002)

    Google Scholar 

  11. Bernhard Keller, Derived categories and their uses, 1996, pp. 671–701. MR1421815 (98h:18013)

    Google Scholar 

  12. Wolfgang Lück and Holger Reich, The Baum-Connes and the Farrell-Jones Conjectures in K-and L-theory, Preprintreihe SFB 478 324 (2004), Universität Münster.

    Google Scholar 

  13. Ralf Meyer, Analytic cyclic cohomology, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, 1999.

    Google Scholar 

  14. _____, Bornological versus topological analysis in metrizable spaces, 249–278. MR2097966

    Google Scholar 

  15. _____, Smooth group representations on bornological vector spaces, Bull. Sci. Math. 128 (2004), 127–166. MR2039113 (2005c:22013) (English, with English and French summaries)

    Google Scholar 

  16. _____, Combable groups have group cohomology of polynomial growth (2004), http://arxiv.org/math.KT/0410597 (to appear in Q. J. Math.)

    Google Scholar 

  17. _____, Embeddings of derived categories of bornological modules (2004), http://arxiv.org/math.FA/0410596 (eprint).

    Google Scholar 

  18. A. Yu. Pirkovskii, Stably flat completions of universal enveloping algebras (2003), http://arxiv.org/math.FA/0311492 (eprint).

    Google Scholar 

  19. Jonathan Rosenberg, Algebraic K-theory and its applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994, ISBN 0-387-94248-3. MR1282290 (95e:19001)

    Google Scholar 

  20. Peter Schneider and Ulrich Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. (1997), 97–191. MR1471867 (98m:22023)

    Google Scholar 

  21. P. Schneider and E.-W. Zink, K-types for the tempered components of a p-adic general linear group, J. Reine Angew. Math. 517 (1999), 161–208, With an appendix by P. Schneider and U. Stuhler. MR1728541 (2001f:22029)

    MATH  MathSciNet  Google Scholar 

  22. Allan J. Silberger, Introduction to harmonic analysis on reductive p-adic groups, Mathematical Notes, vol. 23, Princeton University Press, Princeton, N.J., 1979, ISBN 0-691-08246-4, Based on lectures by Harish-Chandra at the Institute for Advanced Study, 1971–1973. MR544991 (81m:22025)

    MATH  Google Scholar 

  23. J. Tits, Reductive groups over local fields, 29–69. MR546588 (80h:20064)

    Google Scholar 

  24. François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. MR0225131 (37 #726)

    MATH  Google Scholar 

  25. Marie-France Vignéras, On formal dimensions for reductive p-adic groups, 225–266. MR1159104 (93c:22034)

    Google Scholar 

  26. J.-L. Waldspurger, La formule de Plancherel pour les groupes p-adiques (d–après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), 235–333. MR1989693 (2004d:22009) (French) E-mail address: rameyer@math.uni-muenster.de

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Friedr. Vieweg & Sohn Verlag ∣ GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

Meyer, R. (2006). Homological algebra for Schwartz algebras of reductive p-adic groups. In: Consani, C., Marcolli, M. (eds) Noncommutative Geometry and Number Theory. Aspects of Mathematics. Vieweg. https://doi.org/10.1007/978-3-8348-0352-8_13

Download citation

Publish with us

Policies and ethics