Skip to main content

Isotopische Zusammensetzung, Hochauflösung und exakte Masse

  • Chapter
Massenspektrometrie
  • 20k Accesses

Zusammenfassung

In der allgemeinen Chemie wird dem Umstand, dass die an einer Reaktion beteiligten Elemente aus unterschiedlichen Isotopen bestehen, nur wenig Beachtung geschenkt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. de Laeter JR; De Bièvre P; Peiser HS: Isotope Mass Spectrometry in Metrology. Mass Spectrom. Rev. 1992 , 11, 193-245.

    Article  CAS  Google Scholar 

  2. Audi G: The History of Nuclidic Masses and of Their Evaluation. International Journal of Mass Spectrometry 2006 , 251, 85-94.

    Article  CAS  Google Scholar 

  3. Budzikiewicz H; Grigsby RD: Mass Spectrometry and Isotopes: A Century of Research and Discussion. Mass Spectrometry Reviews 2006 , 25, 146-157.

    Article  CAS  Google Scholar 

  4. Todd JFJ: Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. International Journal of Mass Spectrometry and Ion Processes 1995 , 142, 211-240.

    Article  CAS  Google Scholar 

  5. McLafferty FW; Turecek F: Interpretation of Mass Spectra; 4. Aufl.; University Science Books: Mill Valley, 1993 .

    Google Scholar 

  6. Spakman OD: Mass Spec Desk Reference;Global View Publishing: Pittsburgh, 2000 .

    Google Scholar 

  7. IUPAC: Isotopic Composition of the Elements 1997. Pure Appl. Chem. 1998 , 70, 217-235. 

    Article  Google Scholar 

  8. IUPAC; Coplen TP: Atomic Weights of the Elements 1999. Pure Appl. Chem. 2001 , 75, 667-683. 

    Google Scholar 

  9. Price P: Standard Definitions of Terms Relating to Mass Spectrometry. A Report From the Committee on Measurements  and Standards of the Amercian Society for Mass Spectrometry. Journal of the American Society for Mass Spectrometry 1991 , 2, 336-348. 

    Article  CAS  Google Scholar 

  10. Busch KL: Units in Mass Spectrometry. Spectroscopy 2001 , 16, 28-31. 

    CAS  Google Scholar 

  11. Platzner IT: Applications of Isotope Ratio Mass Spectrometry, in Modern Isotope Ratio Mass Spectrometry, 1. Aufl.;John Wiley & Sons: Chichester, 1997 ; 403-447. 

    Google Scholar 

  12. Ferrer I; Thurman EM: Measuring the Mass of an Electron by LC/TOF-MS: A Study of "Twin Ions". Anal. Chem. 2005 , 77, 3394-3400. 

    Article  CAS  Google Scholar 

  13. Ferrer I; Thurman EM: Importance of the Electron Mass in the Calculations of Exact Mass by Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007 , 21, 2538-2539. 

    Article  CAS  Google Scholar 

  14. Schmidt HL: Food Quality Control and Studies on Human Nutrition by Mass Spectrometric and Nuclear Magnetic Resonance Isotope Ratio Determination. Fresenius’ Zeitschrift fur Analytische Chemie 1986 , 324, 760-766. 

    Article  CAS  Google Scholar 

  15. Beavis RC: Chemical Mass of Carbon in Proteins. Anal. Chem. 1993 , 65, 496-497. 

    Article  CAS  Google Scholar 

  16. Carle R: Isotopen-Massenspektrometrie: Grundlagen und Anwendungsmoglich- keiten. Chem. unserer Zeit 1991 , 20, 75-82. 

    CAS  Google Scholar 

  17. Forstel H: The Natural Fingerprint of Stable Isotopes – Use of IRMS to Test Food Authenticity. Anal. Bioanal. Chem. 2007 , 388, 541-544. 

    Article  Google Scholar 

  18. Busch KL: Isotopes and Mass Spectrometry. Spectroscopy 1997 , 12, 22-26. 

    Google Scholar 

  19. Beynon JH: The Compilation of a Table of Mass and Abundance Values, in Mass spectrometry and its applications to organic chemistry, 1. Aufl.; Elsevier: Amsterdam, 1960 ; Kap.8.3, 294-302. 

    Google Scholar 

  20. McLafferty FW; Turecek F: Interpretation of Mass Spectra; 4. Aufl.; University Science Books: Mill Valley, 1993 .

    Google Scholar 

  21. Margrave JL; Polansky RB: Relative Abundance Calculations for Isotopic Molecular Species. J. Chem. Educ. 1962, 335-337. 

    Google Scholar 

  22. Yergey JA: A General Approach to Calculating Isotopic Distributions for Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1983 , 52, 337-349. 

    Article  CAS  Google Scholar 

  23. Hsu CS: Diophantine Approach to Isotopic Abundance Calculations. Anal. Chem. 1984 , 56, 1356-1361. 

    Article  Google Scholar 

  24. Kubinyi H: Calculation of Isotope Distributions in Mass Spectrometry. A Trivial Solution for a Non-Trivial Problem. Anal. Chim. Acta 1991 , 247,107-119. 

    Article  CAS  Google Scholar 

  25. Frauenkron M; Berkessel A; Gross JH: Analysis of Ruthenium Carbonyl- Porphyrin Complexes: a Comparison of Matrix-Assisted Laser Desorption/- Ionization Time-of-Flight, Fast-Atom Bombardment and Field Desorption Mass Spectrometry. Eur. Mass Spectrom. 1997 , 3, 427-438. 

    Article  CAS  Google Scholar 

  26. Giesa S; Gross JH; Hull WE; Lebedkin S; Gromov A; Kratschmer W; Gleiter R: C120OS: the First Sulfur-Containing Dimeric [60]Fullerene Derivative. Chem. Commun. 1999, 465-466. 

    Google Scholar 

  27. Luffer DR; Schram KH: Electron Ionization Mass Spectrometry of Synthetic C60. Rapid Commun. Mass Spectrom. 1990 , 4, 552-556. 

    Article  CAS  Google Scholar 

  28. Srivastava SK; Saunders W: Ionization of C60 (Buckminsterfullerene) by Electron Impact. Rapid Commun. Mass Spectrom. 1993 , 7, 610-613. 

    Article  CAS  Google Scholar 

  29. Scheier P; Dunser B; Mark TD: Production and Stability of Multiply- Charged C60. Electrochem. Soc. Proc. 1995 , 95-10, 1378-1394. 

    CAS  Google Scholar 

  30. Thomas AF: Deuterium Labeling in Organic Chemistry; Appleton-Century- Crofts: New York, 1971 .

    Google Scholar 

  31. Kaltashov IA; Eyles SJ: Mass Spectrometry in Biophysics: Conformation and Dynamics of Biomolecules; John Wiley & Sons Inc.: Hoboken, 2005. 

    Book  Google Scholar 

  32. Balogh MP: Debating Resolution and Mass Accuracy in Mass Spectrometry. Spectroscopy 2004 , 19, 34-38,40. 

    CAS  Google Scholar 

  33. Bristow AWT: Accurate Mass Measurement for the Determination of Elemental Formula – a Tutorial. Mass Spectrometry Reviews 2006 , 25, 99-111. 

    Article  CAS  Google Scholar 

  34. Leslie AD; Volmer DA: Dealing With the Masses: a Tutorial on Accurate Masses, Mass Uncertainties, and Mass Defects. Spectroscopy 2007 , 22, 32,34-32,39. 

    Google Scholar 

  35. Busch KL: The Resurgence of Exact Mass Measurement With FTMS. Spectroscopy 2000 , 15, 22-27. 

    Google Scholar 

  36. Beynon JH: Qualitative Analysis of Organic Compounds by Mass Spectrometry. Nature 1954 , 174, 735-737. 

    Article  CAS  Google Scholar 

  37. Pomerantz SC; McCloskey JA: Fractional Mass Values of Large Molecules. Org. Mass Spectrom. 1987 , 22, 251-253. 

    Article  CAS  Google Scholar 

  38. Boyd RK; Basic C; Bethem RA: Trace Quantitative Analysis by Mass Spectrometry; John Wiley & Sons, Ltd.: Chichester, 2008 .

    Book  Google Scholar 

  39. Kilburn KD; Lewis PH; Underwood JG; Evans S; Holmes J; Dean M: Quality of Mass and Intensity Measurements From a High Performance Mass Spectrometer. Analytical Chemistry 1979 , 51, 1420-1425. 

    Article  CAS  Google Scholar 

  40. Sack TM; Lapp RL; Gross ML; Kimble BJ: A Method for the Statistical Evaluation of Accurate Mass Measurement Quality. Int. J. Mass Spectrom. Ion Proc. 1984 , 61, 191-213. 

    Article  CAS  Google Scholar 

  41. Kim S; Rodgers RP; Marshall AG: Truly "Exact" Mass: Elemental Composition Can Be Determined Uniquely From Molecular Mass Measurement at Approximately 0.1 mDa Accuracy for Molecules up to Approximately 500 Da. International Journal of Mass Spectrometry 2006 , 251, 260-265. 

    Article  CAS  Google Scholar 

  42. Zubarev RA; Demirev PA; Hakansson P; Sundqvist BUR: Approaches and Limits for Accurate Mass Characterization of Large Biomolecules. Anal. Chem. 1995 , 67, 3793-3798. 

    Article  CAS  Google Scholar 

  43. Zubarev RA; Hakansson P; Sundqvist B: Accuracy Requirements for Peptide Characterization by Monoisotopic Molecular Mass Measurements. Anal. Chem. 1996 , 68, 4060-4063. 

    Article  CAS  Google Scholar 

  44. Clauser KR; Baker P; Burlingame A: Role of Accurate Mass Measurement ( ± 10 ppm) in Protein Identification Strategies Employing MS or MS/MS and Database Searching. Anal. Chem. 1999 , 71, 2871-2882. 

    Article  CAS  Google Scholar 

  45. Spengler B: De Novo Sequencing, Peptide Composition Analysis, and Composition- Based Sequencing: a New Strategy Employing Accurate Mass Determination by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004 , 15, 703-714. 

    Article  CAS  Google Scholar 

  46. Roussis SG; Proulx R: Reduction of Chemical Formulas From the Isotopic Peak Distributions of High-Resolution Mass Spectra. Anal. Chem. 2003 , 75,1470-1482. 

    Article  CAS  Google Scholar 

  47. Stoll N; Schmidt E; Thurow K: Isotope Pattern Evaluation for the Reduction of Elemental Compositions Assigned to High-Resolution Mass Spectral Data From Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2006 , 17, 1692-1699. 

    Article  CAS  Google Scholar 

  48. Marshall AG; Hendrickson CL; Shi SDH: Scaling MS Plateaus With High- Resolution FT-ICR-MS. Anal. Chem. 2002 , 74, 252A-259A. 

    Article  CAS  Google Scholar 

  49. Busch KL: Masses in Mass Spectrometry: Balancing the Analytical Scales. Spectroscopy 2004 , 19, 32-34. 

    CAS  Google Scholar 

  50. Busch KL: Masses in Mass Spectrometry: Perfluors and More. Part II. Spectroscopy 2005 , 20, 76-81. 

    CAS  Google Scholar 

  51. Bristow AWT; Webb KS: Intercomparison Study on Accurate Mass Measurement of Small Molecules in Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2003 , 14, 1086-1098. 

    Article  CAS  Google Scholar 

  52. Gross ML: Accurate Masses for Structure Confirmation. J. Am. Soc. Mass Spectrom. 1994, 5, Editorial. 

    Google Scholar 

  53. Lehmann WD; Bohne A; von der Lieth CW: The Information Encrypted in Accurate Peptide Masses-Improved Protein Identification and Assistance in Glycopeptide Identification and Characterization. J. Mass Spectrom. 2000 , 35, 1335-1341. 

    Article  CAS  Google Scholar 

  54. Kendrick E: Mass Scale Based on CH2 = 14.0000 for High-Resolution Mass Spectrometry of Organic Compounds. Anal. Chem. 1963 , 35, 2146-2154. 

    Article  CAS  Google Scholar 

  55. Hughey CA; Hendrickson CL; Rodgers RP; Marshall AG; Qian K: Kendrick Mass Defect Spectrum: A Compact Visual Analysis for Ultrahigh-Resolution Broadband Mass Spectra. Analytical Chemistry 2001 , 73, 4676-4681. 

    Article  CAS  Google Scholar 

  56. Hughey CA; Hendrickson CL; Rodgers RP; Marshall AG: Elemental Composition Analysis of Processed and Unprocessed Diesel Fuel by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels 2001 , 15, 1186-1193. 

    Article  CAS  Google Scholar 

  57. van Krevelen DW: Graphical-Statistical Method for the Study of Structure and Reaction Processes of Coal. Fuel 1950 , 29,269-284. 

    CAS  Google Scholar 

  58. Wu Z; Rodgers RP; Marshall AG: Two- and Three-Dimensional Van Krevelen Diagrams: A Graphical Analysis Complementary to the Kendrick Mass Plot for Sorting Elemental Compositions of Complex Organic Mixtures Based on Ultrahigh-Resolution Broadband Fourier Transform Ion Cyclotron Resonance Mass Measurements. Anal. Chem. 2004 , 76,2511-2516. 

    Article  CAS  Google Scholar 

  59. Kim S; Kramer RW; Hatcher PG: Graphical Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the Van Krevelen Diagram. Anal. Chem. 2003 , 75, 5336-5344. 

    Article  CAS  Google Scholar 

  60. Hertkorn N; Benner R; Frommberger M; Schmitt-Kopplin P; Witt M; Kaiser K; Kettrup A; Hedges JI: Characterization of a Major Refractory Component of Marine Dissolved Organic Matter. Geochimica et Cosmochimica Acta 2006 , 70, 2990-3010. 

    Article  CAS  Google Scholar 

  61. Dittmar T; Koch BP: Thermogenic Organic Matter Dissolved in the Abyssal Ocean. Marine Chemistry 2006 , 102, 208-217. 

    Article  CAS  Google Scholar 

  62. Koch BP; Dittmar T: From Mass to Structure: an Aromaticity Index for High- Resolution Mass Data of Natural Organic Matter. Rapid Commun. Mass Spectrom. 2005 , 20, 926-932. 

    Article  Google Scholar 

  63. Yergey J; Heller D; Hansen G; Cotter RJ; Fenselau C: Isotopic Distributions in Mass Spectra of Large Molecules. Anal. Chem. 1983 , 55, 353-356. 

    Article  CAS  Google Scholar 

  64. Werlen RC: Effect of Resolution on the Shape of Mass Spectra of Proteins: Some Theoretical Considerations. Rapid Commun. Mass Spectrom. 1994 , 8, 976-980. 

    Article  CAS  Google Scholar 

  65. Solouki T; Emmet MR; Guan S; Marshall AG: Detection, Number, and Sequence Location of Sulfur-Containing Amino Acids and Disulfide Bridges in Peptides by Ultrahigh-Resolution MALDI-FTICR Mass Spectrometry. Anal. Chem. 1997 , 69,1163-1168. 

    Article  CAS  Google Scholar 

  66. Matsuo T; Sakurai T; Ito H; Wada Y: "High Masses". Int. J. Mass Spectrom. Ion Proc. 1991 , 118/119, 635-659. 

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2013). Isotopische Zusammensetzung, Hochauflösung und exakte Masse. In: Massenspektrometrie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-8274-2981-0_3

Download citation

Publish with us

Policies and ethics