Advertisement

Enzymatische Prozesse

  • Sebastian Briechle
  • Michael Howaldt
  • Thomas Röthig
  • Andreas Liese
Chapter

Zusammenfassung

Nachdem in Kapitel 3 bereits die Grundlagen der Enzymkinetik erläutert wurden, beschäftigt sich dieses Kapitel mit der technischen Nutzung von Enzymen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Balkenhohl, F., Ditrich, K., Hauer, B., Lander, W. (1997): Optisch aktive Amine durch Lipase-katalysierte Methoxyacetylierung. J. prakt. Chem. 339: 381–384CrossRefGoogle Scholar
  2. Balkenhohl, F., Hauer, B., Lander, W., Schnell, U., Pressler, U., Staudemaier, H. R. (1995): Lipase katalysierte Acylierung von Alkoholen mit Diketenen. BASF AG, DE 4329293Google Scholar
  3. Beller, M., Eckert, M., Moradi, W. (1999): First amidocarbonylation with nitriles for the synthesis of N-acyl amino acids. Synlett: 108–110Google Scholar
  4. Bommarius, A., Riebel, B. (2004): Biocatalysis: Fundamentals and Applications. Wiley-VCH, WeinheimGoogle Scholar
  5. Bommarius, A. S., Drauz, K., Klenk, H., Wandrey, C. (1992): Operational stability of enzymes-acylase-catalyzed resolution of N-acetyl amino acids to enantiomerically pure L-amino acids. Ann. N. Y. Acad. Sci. 672: 126–136PubMedCrossRefGoogle Scholar
  6. Buchholz, K., Kasche, V. (1997): Biokatalysatoren und Enzymrechnologie. Wiley-VCH, WeinheimGoogle Scholar
  7. Drauz, K., Waldmann, H. (2002): Enzyme Catalysis in Organic Synthesis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  8. Faber, K. (2000): Biotransformations in Organic Chemistry. 4. Aufl., Springer-Verlag, BerlinCrossRefGoogle Scholar
  9. Ferloni, C., Heinemann, M., Hummel, W., Daussmann, T., Buchs J. (2004): Optimization of enzymatic gas-phase reactions by increasing the long-term stability of the catalyst. Biotechnol. Prog. 3: 975–978CrossRefGoogle Scholar
  10. Filho, M. V., Stillger, T. Muller, M., Liese, A., Wandrey C. (2003): Is logP a convenient criterion to guide the choice of solvents for biphasic enzymatic reactions. Angew. Chem. 115: 3101–3104CrossRefGoogle Scholar
  11. Flaschel, E., Raetz, E., Renken, A. (1983): Development of a Tubular Recycle Membrane Reactor for Continuous Operation with Soluble Enzymes. In: Lafferty, E. (Hrsg.) Enzyme Technology, Springer-Verlag, Berlin, 285–295CrossRefGoogle Scholar
  12. Flaschel, E., Wandrey, C., Kula, M. R. (1983): Ultrafiltration for the separation of biocatalysts. Adv. Biochem. Eng. 26: 73–142Google Scholar
  13. Frost & Sullivan (2003): Advances in Biotechnology for the Manufacture of Chemicals-Part 1 (D481), Technical Insights Internet: www.frost.com, www.technical-insights.frost.comGoogle Scholar
  14. Frost & Sullivan (2003): Advances in Biotechnology for Chemical Manufacture-Part 2 (D482), Technical Insights Internet: www.frost.com, www.technical-insights.frost.comGoogle Scholar
  15. Gregory, H. R. J. (1999): Cyanohydrins in nature and the laboratory: biology, preparations, and synthetic applications. Chem. Rev. 99: 3649–3682PubMedCrossRefGoogle Scholar
  16. Griebenow, K., Klibanov, A. M. (1996): On protein denaturation in aqueous-organic mixtures but not in pure organic systems. J. Am. Chem. Soc. 118(47): 11695–11700CrossRefGoogle Scholar
  17. Groger, H. (2001): Enzymatic routes to enantiomerically pure aromatic a-hydroxy carboxylic acids: a further example for the diversity of biocatalysis. Adv. Synth. Catal. 343: 547–558CrossRefGoogle Scholar
  18. Gupta, M. N. (2000): Methods in non-aqueous enzymology. Birkhäuser-Verlag, Basel, Boston, BerlinCrossRefGoogle Scholar
  19. Halling, J. P. (1990): Solvent selection for biocatalysis in mainly organic systems: Predictions of effects on equilibrium position. Biotechn. Bioeng. 35: 691–701CrossRefGoogle Scholar
  20. Hansch, C., Leo, A. (1979): Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley-Interscience, New YorkGoogle Scholar
  21. Hartmeier, W. (1986): Immobilisierte Biokatalysatoren. Springer-Verlag, Berlin, HeidelbergCrossRefGoogle Scholar
  22. Hilterhaus, L., Thum, O., Liese, A. (2008): Reactor concept for lipase-catalyzed solvent-free conversion of highly viscous reactants forming two-phase systems. Org. Proc. Res. Dev. 12(4): 618–625CrossRefGoogle Scholar
  23. Holm, J., Bjoerck, I., Eliasson, A. C. (1985): Digestibility of amylose-lipid complexes in vitro and in vivo. Prog. Biotechnol. 1: 89–92Google Scholar
  24. Holm, J., Bjoerck, I., Ostrowska, S., Eliasson, A. C., Asp, N. G., Larsson, K., Lundquist, L. (1983): Digestibility of amyloselipid complexes in vitro and in vivo. Starke 35: 294–297CrossRefGoogle Scholar
  25. Hill, C. G. (1977): Chemical Engineering Kinetics and Reactor Design. J. Wiley & Sons, New YorkGoogle Scholar
  26. Kainuma, K. (1998): Applied glycoscience-past, present and future. Foods Food Ingredients J. Jpn. 178: 4–10Google Scholar
  27. Khmelnitsky, Y. L., Levashov, A. V., Klyachko, N. L., Martinek, K. (1988): Engineering bio-catalytic systems in organic media with low water content. Enzyme Microb. Technol. 10: 710–724CrossRefGoogle Scholar
  28. Klibanov, A. M. (1986): Enzymes that work in organic solvents. Chemtech 6: 354–359Google Scholar
  29. Klibanov, A. M. (2001): Improving enzymes by using them in organic solvents. Nature 409: 241–246PubMedCrossRefGoogle Scholar
  30. Kragl, U., Gygax, D., Ghisalba, O., Wandrey, C. (1991): Enzymatic process for preparing N-acetylneuraminic acid. Angew. Chem. Int. Ed. Engl. 30: 827–828CrossRefGoogle Scholar
  31. Kragl, U., Eckstein, M., Kaftzik, N. (2002): Biocatalytic reactions in ionic liquids. In: Wasserscheid, P., Welton, T. (Hrsg.) Ionic Liquids in Synthesis. Wiley-VCH, Weinheim, 336–347CrossRefGoogle Scholar
  32. Kragl, U., Niedermeyer, U., Kula, M.-R, Wandrey, C. (1990): Engineering aspects of enzyme engineering-continuous asymmetric C-C bond formation in an enzyme-membrane-reactor. Ann. N. Y. Acad. Sci. 613: 167–175CrossRefGoogle Scholar
  33. Krieger, N., Bhatnagar, T., Baratti, J. C., Baron, A. B., de Lima, V. M., Mitchell, D. (2004): Non-aqueous biocatalysis in heterogeneous solvent systems. Food Technol. Biotechol. 42: 279–286Google Scholar
  34. Laane, C., Boeren, S., Vos, K. (1985): On optimizing organic solvents in multi-liquid-phase biocatalysis. Trends Biotechnol. 3: 251–252CrossRefGoogle Scholar
  35. Laane, C., Tramper, J. (1990): Tailoring the medium and reactor for biocatalysis. Chemtech 8: 502–506Google Scholar
  36. Labout, J. J. M. (1985): Conversion of liquefied starch into glucose using a novel glucoamylase system. Starke 37: 157–161CrossRefGoogle Scholar
  37. Lee, L. G., Whitesides, G. M. (1985): Enzyme-catalysed organic synthesis: a comparison of strategies for in situ regeneration of NAD from NADH. J. Am. Chem. Soc. 107: 6999–7008CrossRefGoogle Scholar
  38. Leuchtenberger, W., Karrenbauer, M., Plöcker, U. (1984): Scale-up of an enzyme membrane reactor process for the manufacture of L-enantiomeric compounds. Enzyme Engineering 7, Ann. N. Y. Acad. Sci. 434: 78–86CrossRefGoogle Scholar
  39. Levenspiel, O. (1999): Chemical reaction engineering. John Wiley & Sons, Inc., New YorkGoogle Scholar
  40. Liese, A., Karutz, M., Kamohuis, J., Wandrey, C., Kragl, U. (1996): Enzymatic resolution of 1-phenyl-1,2-ethanediol by enantioselective oxidation: overcoming product inhibition by continuous extraction. Biotechnol. Bioeng. 51: 544–550PubMedCrossRefGoogle Scholar
  41. Liese, A. (2002): Replacing chemical steps by biotransformations: industrial applications and processes using biocatalysis in enzyme catalysis in organic synthesis. 2. Aufl., (K. Drauz, H. Waldmann, Hrsg.), Wiley-VCH, 1419–1460Google Scholar
  42. Liese, A., Seelbach, K., Wandrey, C. (2000): Industrial Biotransformations. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  43. Lopez, J. L., Matson, S. L. (1991): Liquid-liquid extractive membrane reactors. Bioproc. Technol. 11: 27–66Google Scholar
  44. Luthi, P., Luisi, P. (1984): Enzymatic synthesis of hydrocarbon-soluble peptides with reverse micelles. J. Am. Chem. Soc. 106: 7285–7286CrossRefGoogle Scholar
  45. Martinek, K., Klyachko, N. L., Kabanov, A. V., Khmelnitsky, Y. L., Levashov, A. V. (1989): Micellar enzymology: its relation to membranology. Biochim. Biophys. Acta 981: 161–172PubMedCrossRefGoogle Scholar
  46. Martinek, K., Levashov, A. V., Khmelnitsky, Y. L., Klyachko, N. L., Berezin, I. V. (1982): Colloidal solution of water in organic solvents: a microheterogenous medium for enzymatic reactions. Science 218: 889–891PubMedCrossRefGoogle Scholar
  47. Martinek, K., Semenov, A. N., Berezin, I. V.(1981): Enzymatic synthesis in biphasic aqueous-organic systems I. Chemical equilibrium shift. Biochim. Biophys. Acta 658: 76–89PubMedCrossRefGoogle Scholar
  48. Maru, I. Ohnishi, J., Ohta, Y. Tsukada, Y. (1998): Simple and large-scale production of N-acetylneuraminic acid from N-acetyl-D-glucosamine and pyruvate using N-acyl-Dglucosamine 2-epimerase and N-acetylneuraminate lyase. Carb. Res. 306: 575–578CrossRefGoogle Scholar
  49. Maru, I., Ohta, Y., Murata, K., Tsukada Y. (1996): Molecular cloning and identification of N-acyl-D-glucosamine 2-epimerase from procine kidney as a renin-binding protein. Biol. Chem. 271: 16294–16299CrossRefGoogle Scholar
  50. Matson, S. L. (1987): Method and apparatus for catalyst containment in multiphase membrane reactor systems. PCT WO 87/02381, PCT US 86/02089Google Scholar
  51. Matsumae, H., Shibatani, T. (1994): Purification and characterization of the lipase from Serratia marcescens Sr41 8000 responsible for asymmetric hydrolysis of 3-phenylglycidic acid esters. J. Ferment. Bioeng. 77: 152–158CrossRefGoogle Scholar
  52. Matsumae, H., Furui, M., Shibatani, T., Tosa, T. (1994): Production of optically active 3-phenylglycidic acid ester by the lipase from Serratia marcescens in a hollow-fiber membrane reactor. J. Ferment. Bioeng. 78: 59–63CrossRefGoogle Scholar
  53. Matsumoto, K. (1993): Production of 6-APA, 7-ACA, and 7-ADCA by immobilized penicillin and cephalosporin amidases. In: Tanaka, A., Tosa, T., Kobayashi, T. (Hrsg.) Industrial Application of Immobilized Biocatalysts. Marcel Dekker, New York, 67–88Google Scholar
  54. Melin, T., Rautenbach, R. (2004): Membranverfahren: Grundlagen der Modul-und Anlagenauslegung. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  55. Park, S., Kazlauskas, R. (2001): Improved preparation and use of room temperature ionic liquids in lipase-catalyzed enantio-and regioselective acylations. J. Org. Chem. 66: 8395–8401PubMedCrossRefGoogle Scholar
  56. Pasteur, L. (1858): Memoire sure la fermentation de l’acide tartrique. C. R. Acad. Sci. (Paris) 46: 615–618Google Scholar
  57. Prenosil, J. E., Dunn, I. J., Heinzle, E. (1987): Biocatalyst Reaction Engineering. In: Rehm, H.-J., Reed, G. (Hrsg.) Biotechnology, Vol. 7a. VCH-Verlagsgesellschaft, WeinheimGoogle Scholar
  58. Reetz, M., Wiesenhofer, W., Francio, G., Leitner, W. (2002): Biocatalysis in ionic liquids: batchwise and continuous flow processes using supercritical carbon dioxide as the mobile phase. Chem. Commun.: 992–993Google Scholar
  59. Reetz, M. T., Schimossek, K. (1996): Lipase-catalyzed dynamic kinetic resolution of chiral amines: use of palladium as the racemization catalyst. Chimia 50: 668Google Scholar
  60. Rekker, R. F. (1977): The Hydrophobic Fragmental Constant. Elsevier, AmsterdamGoogle Scholar
  61. Röthig, T. R. (1992): Biotechnische Herstellung eines Borkenkäferpheromons mit einer Alkohol Dehydrogenase. Dissertation, Universitat StuttgartGoogle Scholar
  62. Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., Witholt, B. (2001): Industrial biocatalysis today and tomorrow. Nature 409: 258–268PubMedCrossRefGoogle Scholar
  63. Sheldon, R. A. (1993): Chirotechnology: Industrial Synthesis of Optically Active Compounds. Marcel Dekker, New YorkGoogle Scholar
  64. Shibatani, T., Omori, K., Akatsuka, H., Kawai, E., Matsumae, H. (2000): Enzymatic resolution of diltiazem intermediate by Serratia marcescens lipase: molecular mechanism of lipase secretion and its industrial application. J. Mol. Catal. B Enzym. 10: 141–149CrossRefGoogle Scholar
  65. Silverman, R. B. (2002): The organic chemistry of enzymecatalyzed reactions. Academic Press, San DiegoGoogle Scholar
  66. Summer, J. B. (1926): The isolation and crystallization of the enzyme urease. J. Biol. Chem. 69: 435–441Google Scholar
  67. Sym (1936): ???Google Scholar
  68. Tamamushi, B., Watanabe, N. (1980): The formation of molecular aggregation structures in ternary system: Aerosol OT/water/iso-octane. Colloid Polymer Science 258: 174–178CrossRefGoogle Scholar
  69. Thum, O. (2004): Enzymatic production of care specialties based on fatty acid esters. Tenside Surfactants Detergents 41: 287–290Google Scholar
  70. van Rantwijk, F., Madeira Lau, R., Sheldon, R. A. (2003): Biocatalytic transformations in ionic liquids. Trends Biotechnol. 21: 131–138PubMedCrossRefGoogle Scholar
  71. Verweij, J., de Vroom, E. (1993): Industrial transformations of penicillins and cephalosporins. Rec. Trav. Chim. Pays-Bas 112(2): 66–81CrossRefGoogle Scholar
  72. Vulfson, E. N., Halling P. J., Holland, H. L. (2001): Enzymes in nonaqueous solvents. Humana Press Inc., New JerseyCrossRefGoogle Scholar
  73. Wandrey, C., Flaschel, E. (1979): Process development and economic aspects in enzyme engineering. Acylase L-methionine system. In: Ghose, T. K., Fiechter, A., Blakebrough, N. (Hrsg.) Advances in Biochemical Engineering 12. Springer-Verlag, Berlin, 147–218Google Scholar
  74. Wandrey, C., Wichmann, R., Leuchtenberger, W., Kula, M.-R. (1981): Process for the continuous enzymatic change of water soluble α-ketocarboxylic acids into the corresponding amino acids. Degussa AG, US 4 304 858Google Scholar
  75. Wasserscheid, P., Keim, W. (2000): Ionic liquids-new „solutions“ for transition metal catalysis. Angew. Chem. Int. Ed. Engl. 39: 3772PubMedCrossRefGoogle Scholar
  76. Wasserscheid, P., van Hal, R., Bösmann, A. (2002): 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate-an even ‘greener’ ionic liquid. Green Chemistry 4: 400–404CrossRefGoogle Scholar
  77. Wiemann, L. O., Nieguth, R., Eckstein, M., Naumann, M., Thum, O., Ansorge-Schumacher, M. B. (2009a): Novel composite particles of Novozyme 435 and silicone: Advancing technical applicability of macroporous enzyme carriers. ChemCatChem. 1: 255–262Google Scholar
  78. Wiemann, L. O., Weißhaupt, P., Nieguth, R., Thum, O., Ansorge-Schumacher, M. B. (2009b): Enzyme stabilization by deposition of silicone coatings. Org. Proc. Res. Dev. 13: 617–620CrossRefGoogle Scholar

Copyright information

© Spektrum Akademischer Verlag Heidelberg 2011

Authors and Affiliations

  • Sebastian Briechle
    • 1
  • Michael Howaldt
    • 2
  • Thomas Röthig
    • 3
  • Andreas Liese
    • 4
  1. 1.Chemical Engineering Industrial BiotechnologyLudwigshafen
  2. 2.Boehringer Ingelheim Pharma GmbH & Co. KGBiberach
  3. 3.Schwelm
  4. 4.Institut für Technische BiokatalyseTechnische Universität Hamburg-HarburgHamburg

Personalised recommendations