Advertisement

Kultivierung von Säugetierzellen

  • Michael Howaldt
  • Franz Walz
  • Ralph Kempken

Zusammenfassung

Die Kultivierung von Säugetierzellen hat in Verbindung mit der industriellen Anwendung der Gen- und Biotechnik eine große medizinische und wirtschaftliche Bedeutung erlangt. Viele Hundert Gene für Proteine wurden kloniert und in tierischen Zellen exprimiert. Eine stetig steigende Zahl von Proteinen ist bereits für die Anwendung am Menschen zugelassen bzw. wird für ihre Eignung als Arzneimittel geprüft. Im Jahr 1987 wurde Actilyse® für die Therapie des Herzinfarktes in den Markt eingeführt, als eines der ersten Medikamente dieser Art, das aus Säugetierzellkulturen gewonnen wurde. Seitdem wurden viele weitere Proteine als Medikamente zur Therapie von Krankheiten in hochreiner Form und in großen Mengen aus Zellkulturen hergestellt (Tabelle 11.1). Auch die Diagnose-Möglichkeiten konnten durch gentechnische Verfahren erheblich erweitert werden. Viele Substanzen, die zuvor aufwendig und meist unwirtschaftlich aus tierischen und menschlichen Geweben extrahiert werden mussten, können inzwischen gezielt und sicher aus Säugetierzellkulturen hergestellt werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aisen, P., Listowsky, I. (1980): Iron Transport and Storage Proteins. Ann. Rev. Biochem. 49: 357–393PubMedCrossRefGoogle Scholar
  2. AMG (Arzneimittelgesetz): Gesetz über den Verkehr mit Arzneimitteln. 11.12.1998 (BGBl. I S. 3586). 14. Artikel 1 Zwölftes ÄndG vom 30.06.2004 (BGBl. I, Nr. 41, S. 2031)Google Scholar
  3. Amoils, S. (2006): Targeted integration. Nat. Rev. Microbiol. 4: 87CrossRefGoogle Scholar
  4. ArbSchG: Gesetz über die Durchführung von Maßnahmen des Arbeitsschutzes zur Verbesserung der Sicherheit und des Gesundheitsschutzes der Beschäftigten bei der Arbeit (Arbeitsschutzgesetz) vom 7. August 1996 (BGBl. I Nr. 43 vom 20.08.1996, S. 1246) zuletzt geändert am 5. Februar 2009 durch Artikel 15 Abs. 89 des Gesetzes zur Neuordnung und Modernisierung des Bundesdienstrechts (Dienstrechtsneuordnungsgesetz-DNeuG) (BGBl. I Nr. 7 vom 11.02.2009, S. 160)Google Scholar
  5. Barnes, L. M., Bentley, C. M., Dickson, A. J. (2000): Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology 32(2): 109–123PubMedCrossRefGoogle Scholar
  6. Bebbington, C. R., Renner, G., Thomson, S., King, D., Abrams, D., Yarranton, G. T. (1992): High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. BioTechnology 10: 169–175PubMedCrossRefGoogle Scholar
  7. Bebbington, C. R., Hentschel, C. C. G. (1987): The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells. In: Glover, D. M. (Hrsg.) DNA cloning, Vol. III A Practical Approach. Academic Press, San Diego, 163–180Google Scholar
  8. Berg, G. J., Bödecker, B. G. D. (1988): Employing a ceramic matrix for the immobilization of mammalian cells in culture. In: Spier, R. E., Griffith, J. B. (Hrsg.) Animal Cell Biotechnology, Vol. 3. Academic Press, London, 322-335Google Scholar
  9. BetrSichV: Verordnung über Sicherheit und Gesundheitsschutz bei der Bereitstellung von Arbeitsmitteln und deren Benutzung bei der Arbeit, über Sicherheit beim Betrieb überwachungsbedürftiger Anlagen und über die Organisation des betrieblichen Arbeitsschutzes (Betriebssicherheitsverordnung) vom 27. September 2002 (BGBl. I Nr. 70 vom 02.10.2002, S. 3777) zuletzt geändert am 18. Dezember 2008 (BGBl. I Nr. 62 vom 23.12.2008, S. 2768)Google Scholar
  10. Bigalke, S. (2009): Ein Impfstoff für Millionen. Süddeutsche Zeitung vom 29.10.2009. www.sueddeutsche.de/wissen/281/492636/textGoogle Scholar
  11. BImSchG: Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz) in der Fassung der Bekanntmachung vom 26. September 2002 (BGBl. I Nr. 71 vom 04.10.2002, S. 3830) zuletzt geändert am 11. August 2009 (BGBl. I Nr. 53 vom 17.08.2009, S. 2723)Google Scholar
  12. Birger Anspach, F., Curbelo, D., Hartmann, R., Garke, G., Deckwer, W. D. (1999): Expanded-bed chromatography in primary protein purification. J. Chromatogr. A 865: 129–144PubMedCrossRefGoogle Scholar
  13. Blasey, H. D., Aubry, J. P., Mazzei, G. J., Bernard, A. R. (1996): Large scale transient expression with COS cells. Cytotechnology 18: 183–192CrossRefGoogle Scholar
  14. Bonarius, H. P. J., Oezemere, A., Timmerarends, B., Skrabal, P., Tramper, J., Schmid, G., Heinzle, E. (2001): Metabolicflux analysis of continuously cultured hybridoma cells using 13CO2 mass spectrometry in combination with 13-Clactate nuclear magnetic resonance spectroscopy and metabolite balancing. Biotechnol. Bioeng. 74(6): 528-538PubMedCrossRefGoogle Scholar
  15. Büntemeyer, H., Siwiora, S., Lehmann, J. (1997): Inhibitors of cell growth: accumulation and con-centration. In: Carrondo, M. J. T., Griffiths, B., Moeira, L. P. (Hrsg.) Animal Cell Technology. Kluwer Academic Publishers, Dordrecht, 651–655CrossRefGoogle Scholar
  16. Butler, M. (2005): Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl. Microbiol. Biotechnol. 68: 283–291PubMedCrossRefGoogle Scholar
  17. Carr, P. A., Church, G. M. (2009): Genome engineering. Nat. Biotechnol. 27: 1151–1162PubMedCrossRefGoogle Scholar
  18. Christi, Y. (1993): Animal cell culture in stirred bioreactors: Observations on scale-up. Bioprocess Eng. 9: 191–196CrossRefGoogle Scholar
  19. Chu, L., Robinson, D. K. (2001): Industrial choices for protein production by large-scale cell culture. Current Opinion in Biotechnology 12, 180–187 Chu 2001)PubMedCrossRefGoogle Scholar
  20. Deshpande, R. R., Heinzle, E. (2004): On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors. Biotechnol. Lett. 26: 763–767PubMedCrossRefGoogle Scholar
  21. Dick, L. W. (2009): Investigation of proteins and peptides from yeastolate and subsequent impurity testing of drug product. Biotechnol. Progress 25(2): 570–577CrossRefGoogle Scholar
  22. Dübel, S. (2007): Handbook of Therapeutic Antibodies, Kapitel 9. Wiley-VCH-Verlag, Weinheim, 224-231CrossRefGoogle Scholar
  23. Dulbecco, R., Freeman, G. (1959): Plaque production by the polyoma virus. Virology 8: 396–397PubMedCrossRefGoogle Scholar
  24. Eagle, H. (1959): Amino acid metabolism in mammalian cell cultures. Science 130: 432–437PubMedCrossRefGoogle Scholar
  25. Eagle, H. (1965): Propagation in a fluid medium of a human epidermoid carcinoma, Strain KB (21811). Proc. Soc. Exp. Biol. Med. 89: 362–364Google Scholar
  26. Edwards, C. P., Aruffo, A. (1993): Current applications of COS cell based transient expression systems. Curr. Opinion Biotechnol. 4: 558–563CrossRefGoogle Scholar
  27. Elmore, S. (2007): Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35(4): 495–516PubMedCrossRefGoogle Scholar
  28. EMEA: European Medicines Agency. www.emea.eu.intGoogle Scholar
  29. Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wikström, C., Wold, S. (2000): Design of Experiments. Principles and Applications. Umetrics AB, Umea, SchwedenGoogle Scholar
  30. Evans, V. J., Bryant, J. C., Kerr, H. A., Schilling, E. I. (1964): Chemically defined media for cultivation of long-term cell strains from four mammalian species. Exp. Cell Res. 36: 439–474PubMedCrossRefGoogle Scholar
  31. FDA: U.S. Food and Drug Administration. http://www.fda.govGoogle Scholar
  32. FDA CBER: Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing PracticeGoogle Scholar
  33. FDA (1987): Guideline on general Principles of Process ValidationGoogle Scholar
  34. FDA (2004): Pharmaceutical cGMPS for the 21st Century — A Risk-Based Approach, http://www.fda.gov/cder/gmp/gmp2004/GMP_finalreport2004.htmGoogle Scholar
  35. FDA (2008): Guidance for Industry Process Validation: General Principles and Practices, http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070336.pdfGoogle Scholar
  36. Fike, R., Dadey, B., Hassett, R., Radominski, R., Jayme, D., Cady, D. (2001): Advanced granulation technology: an alternative format for serum-free, chemically defined and protein-free cell culture media. Cytotechnology 36: 33–39PubMedCrossRefGoogle Scholar
  37. Fletcher, T. (2005): Designing culture media for recombinant protein production. BioProcess 3: 30–36Google Scholar
  38. Franek, F., Hohenwarter, O., Katinger, H. (2000): Plant protein hydrolysates: Preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnology Progress 16(5): 688-692PubMedCrossRefGoogle Scholar
  39. GenTG: Gesetz zur Regelung von Fragen der Gentechnik (Gentechnikgesetz) vom 20.06.1990 (BGBl. I/28 1990, S. 1080; BGBl I/16 2008, S. 766)Google Scholar
  40. Genzel, Y., Reichl, U. (2009): Continuous cell lines as a production system for influenza vaccines. Exp. Rev. Vaccines 8(12): 1681–1692CrossRefGoogle Scholar
  41. Gerlach, J. (1997): Bioreactor for a hybrid liver support. In: Carrondo, M. J. T., Griffiths, B., Moreira, L. P. (Hrsg.) Animal Cell Technology. Kluwer Academic Publishers, Dordrecht, 543–555CrossRefGoogle Scholar
  42. Gerlach, J., Schauwecker, H. H., Klöppel, K., Tauber, R., Müller, C., Bücherl, E. (1989): Use of hepatocytes in adhesion and suspension cultures for liver support bioreactors. Int. J. Artif. Org. 12: 788–793Google Scholar
  43. Girard, P., Derouazi, M., Baumgartner, G., Bourgeois, M., Jordan, M., Jacko, B., Wurm, F. (2002): 100-liter transient transfection. Cytotechnology 38: 15–21PubMedCrossRefGoogle Scholar
  44. Grace, T. D. C. (1962): Establishment of four strains of cells from insect tissues grown in vitro. Nature 195: 788–789PubMedCrossRefGoogle Scholar
  45. Graham, F. L., Smiley, J., Russell, W. C., Nairn, R. (1977): Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36: 59–74PubMedCrossRefGoogle Scholar
  46. Ham, R. G. (1965): Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc. Natl. Acad. Sci. 53: 288–293PubMedCrossRefGoogle Scholar
  47. Hang, H., Fox, M. H. (2004): Analysis of the mammalian cell cycle by flow cytometry. Methods Mol. Biol. 241: 23-35PubMedGoogle Scholar
  48. Harmsen, M. M., De Haard, H. J. (2007): Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 77(1): 13–22PubMedCrossRefGoogle Scholar
  49. Harrison, T., Graham, F., Williams, J. (1977): Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 77: 319–329PubMedCrossRefGoogle Scholar
  50. Haubitz, M., Fliser, D., Haller, H. (2004): Proteomanalyse — eine neue Perspektive für die klinische Diagnostik. Deutsches Ärzteblatt 101(21): 1514–1517Google Scholar
  51. Hayflick, L. (1997): Mortality and immortality at the cellular level. A review. Biochemistry (Moscow) 62: 1180–1190Google Scholar
  52. Holliger, P., Hudson, P. J. (2005): Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23: 1126–1136PubMedCrossRefGoogle Scholar
  53. Holt, L. J., Herring, C., Jespers, L. S., Woolven, B. P., Tomlinson, I. M. (2003): Domain antibodies: proteins for therapy. Trends Biotechnol. 21: 484–490PubMedCrossRefGoogle Scholar
  54. International Conference on Harmonisation (ICH) (2000): Q7A Good Manufacturing Practice Guidance for Active Pharmaceutical IngredientsGoogle Scholar
  55. ICH Q7A (2000): Q7A Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients, Abschnitt 18.3Google Scholar
  56. Iscove, N. N., Melchers, F. (1978): Complete replacement of serum by albumin, transferrin, and soybean lipid in cultures of lipopolysaccharide-reactive B lymphocytes. J. Exp. Medicine 147: 923–933CrossRefGoogle Scholar
  57. Jarvis, D. L. (2003): Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310: 1–7PubMedCrossRefGoogle Scholar
  58. Joeris, K., Frerichs, J. G., Konstantinov, K., Scheper, T. (2002): In situ microscopy: Online process monitoring of mammalian cell cultures. Cytotechnology 38: 129–134PubMedCrossRefGoogle Scholar
  59. John, G. T., Goelling, D., Klimant, I., Schneider, H., Heinzle, E. (2003): pH-Sensing 96-well microtitre plates for the characterization of acid production by dairy starter cultures. J. Dairy Res. 70: 327–333PubMedCrossRefGoogle Scholar
  60. Jones, D., Kroos, N., Anema, R., van Montfort, B., Vooys, A., van der Kraats, S., van der Helm, E., Smits, S., Schouten, J., Brouwer, K., Lagerwerf, F., van Berkel, P., Opstelten, D. J., Logtenberg, T., Bout, A. (2003): High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol. Prog. 19(1): 163–168PubMedCrossRefGoogle Scholar
  61. Kalyanpur, M. (2002): Downstream processing in the biotechnology industry. Mol. Biotechnol. 22: 87–98PubMedCrossRefGoogle Scholar
  62. Kaufmann, H., Grammatikos, S., Hoffmann, H., Carius, W. (2005): Towards mature production platforms for biopharmaceuticals. BioWorld Europe: 2–4Google Scholar
  63. Kaufman, R. J., Sharp, P. A. (1982): Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene. J. Mol. Biol. 159: 601–621PubMedCrossRefGoogle Scholar
  64. Kaufman, R. J., Wasley, L. C., Spiliotes, A. J., Gossels, S. D., Latt, S. A., Larsen, G. R., Kay, R. M. (1985): Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol. Cell Biol. 5: 1750–1759PubMedGoogle Scholar
  65. Kempken, R., Büntemeyer, H., Lehmann, J. (1992): Long term application of medium recycling for economic antibody production. In: Spier, R. E., Griffiths, J. B., MacDonald, C. (Hrsg.) Animal Cell Technology. Butterworth-Heinemann Ltd, Oxford, 264-267Google Scholar
  66. Kim, N. S., Kim, S. J., Lee, G. M. (1998): Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence of selective pressure. Biotechnol. Bioeng. 60: 679–688PubMedCrossRefGoogle Scholar
  67. Kirdar, A. O., Conner, J. S., Baclaski, J., Rathore, A. S. (2007): Application of multivariate analysis toward biotech processes: case study of a cell-culture unit operation. Biotechnol. Prog. 23: 61-67PubMedCrossRefGoogle Scholar
  68. Kleinig, H., Maier, U. (1999): Zellbiologie. 4. Aufl. Fischer, StuttgartGoogle Scholar
  69. Koller, M. R., Palson, B. O. (1993): Tissue engineering: Reconstitution of human hematopoesis ex vivo. Biotechnol. Bioeng. 42: 909–930PubMedCrossRefGoogle Scholar
  70. Lawrence, S. (2007a): Pipelines turn to biotech. Nat. Biotechnol. 25: 1342PubMedCrossRefGoogle Scholar
  71. Lawrence, S. (2007b): Billion dollar babies — biotech drugs as blockbusters. Nat. Biotechnol. 25: 380–382PubMedCrossRefGoogle Scholar
  72. Li, F., Hashimura, Y., Pendleton, R., Harms, J., Collins, E., Lee, B. (2006): A systematic approach for scale-down model development and characterization of commercial cell culture processes. Biotechnol. Prog. 22: 696–703PubMedCrossRefGoogle Scholar
  73. Lindl, T. (2002): Zell-und Gewebekultur. 5. Aufl. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  74. Lipps, H. J., Jenke, A. C. W., Nehlsen Scinteie, K. M., Stehle, I. M., Bode, J. (2003) Chromosome-based vectors for gene therapy. Gene 304: 23–33PubMedCrossRefGoogle Scholar
  75. Löser, P., Schirm, J., Guhr, A., Wobus, A. M., Kurtz, A. (2010): Human embryonic stem cell lines and their use in international research. Stem Cells 28: 240–246PubMedGoogle Scholar
  76. Macpherson, I., Stoker, M. (1962): Polyoma transformation of hamster cell clones — an investigation of genetic factors affecting cell competence. Virology 16: 147–151PubMedCrossRefGoogle Scholar
  77. Marks, D. M. (2003): Equipment design considerations for large scale cell culture. Cytotechnology 42: 21–33PubMedCrossRefGoogle Scholar
  78. Michal, G. (1999): Biochemical Pathways: Biochemie-Atlas. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  79. Moore, G. E., Gerner, R. E., Franklin, H. A. (1967): Culture of normal human leukocytes. J. Am. Medical Assoc. 199: 87–92Google Scholar
  80. Nehlsen, K., Schucht, R., Gama-Norton, L., Kromer, W., Baer, A., Cayli, A., Hauser, H., Wirth, D. (2009): Recombinant protein expression by targeting pre-selected chromosomal loci. BioMed Central Biotechnol. 9(1): 100CrossRefGoogle Scholar
  81. Nelson, L. S. (1984): The Shewhart control charts — tests for special causes. J. Quality Technol. 16(4): 237–239Google Scholar
  82. Nelson, L. S. (1985): Interpreting Shewhart X control charts. J. Quality Technol. 17(2): 114–116Google Scholar
  83. Oezemere, A., Heinzle, E. (2001): Measurement of oxygen uptake and carbon dioxide production rates of mammalian cells using membrane mass spectrometry. Cytotechnology 37: 153–162CrossRefGoogle Scholar
  84. Osterholm, M. T. (2005): Preparing for the next pandemic. N. Engl. J. Med. 352(18): 1839–1842PubMedCrossRefGoogle Scholar
  85. Owen, J. S., McIntyre, N., Gillett, M. P. T. (1984): Lipoproteins, cell membranes and cellular functions. Trends Biochem. Sci. 9: 238–242CrossRefGoogle Scholar
  86. Pallavicini, M. G., DeTeresa, P. S., Rosette, C., Gray, J. W., Wurm, F. M. (1990): Effects of methotrexate on transfected DNA stability in mammalian cells. Mol. Cell Biol. 10: 401–404PubMedGoogle Scholar
  87. Parenteral Drug Association (2005): Process Validation of Protein Manufacturing. PDA (Parenteral Drug Association) Technical Report No. 42, Supplement Vol. 59, No. S-4, September/Oktober 2005Google Scholar
  88. Patterson, S. D., Aebersold, R. H. (2003): Proteomics: The first decade and beyond. Nat. Genet. 33: 311-323PubMedCrossRefGoogle Scholar
  89. Pearn, W. L., Kotz, S. (2006): Encyclopedia and Handbook of Process Capability Indices, Series on Quality, Reliability and Engineering Statistics, Vol. 12, Chapter 3. World Scientific Publishing PharmBetrV: Betriebsverordnung für pharmazeutische Unternehmer vom 08.03.1985 (BGBl. I, S. 546), geändert durch 9. Artikel 1 der Dritten Verordnung zur Änderung der Betriebsverordnung für pharmazeutische Unternehmer vom 10.08.2004 (BGBL, S. 2155)Google Scholar
  90. Purtle, D. R., Festen, R. M., Etchberger, K. J., Caffrey, M. B., Doak, J. A. (2003): Validated gamma radiated serum products. JRH Biosciences Research Report No. R013: 1–4 (jrhbio.com)Google Scholar
  91. Radominski, R., Hassett, R., Dadey, B., Fike, R., Cady, D., Jayme, D. (2001): Production-scale qualification of a novel cell culture medium format. BioPharm. Int. 14: 34–39Google Scholar
  92. Rathore, A., Krishnan, R., Tozer, S., Smiley, D., Rausch, S., Seeley, J. (2005): Scaling down of biopharmaceutical unit operations-part I: Fermentation. BioPharm. Int.: 60–68Google Scholar
  93. Rinderknecht, E., Humbel, R. E. (1978): The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 253: 2769–2776PubMedGoogle Scholar
  94. Roitt, I. M., Brostoff, J., Male, D. (2001): Immunology. 6. Aufl. Mosby, EdinburghGoogle Scholar
  95. Ruddle, F. H., Kucherplati, R. S. (1974): Hybrid cells and human genes. Sci. Amer. 231: 36–49PubMedCrossRefGoogle Scholar
  96. Runstadler, P. W., Tung, A. S., Hayman, E. G., Ray, N. G., Sample, J. G., DeLucia, D. E. (1990): Continuous culture with macroporous matrix, fluidized bed systems. Bioprocess Technol. 10: 363–391PubMedGoogle Scholar
  97. Sarmientos, P., Duchesne, M., Denefle, P., Boiziau, J., Fromage, N., Delporte, N., Parker, F., Lelievre, Y., Mayaux, J. F., Cartwright, T. (1989): Synthesis and purification of active human tissue plasminogen activator from Escherichia coli. Bio/Technology 7: 495–501CrossRefGoogle Scholar
  98. Scarff, M., Arnold, S. A., Harvey, L. M., McNeal, B. (2006): Near infrared spectroscopy for bioprocess monitoring and control: current status and future trends. Crit. Rev. Biotechnol. 26: 17–39PubMedCrossRefGoogle Scholar
  99. Schlaeger, E.-J. (1996): Medium design for insect cell culture. Cytotechnology 20: 57–70PubMedCrossRefGoogle Scholar
  100. Schwartz, R. S. (2003): Diversity of the immune repertoire and immunoregulation. New Eng. J. Med. 348: 1017–1026PubMedCrossRefGoogle Scholar
  101. Sedlacek, H. H., Seemann, G., Hoffmann, D. (1992): Antibodies as carriers of cytotoxicity. Monographie „Beiträge zur Onkologie“, Vol. 43. Karger, BaselGoogle Scholar
  102. Smith, L. C., Pownall, H. J., Gotto Jr., A. M. (1978): The plasma lipoproteins: structure and metabolism. Annu. Rev. Biochem. 47: 751–777PubMedCrossRefGoogle Scholar
  103. Storhas, W. (1994): Bioreaktoren und periphere Einrichtungen. 1. Aufl. Vieweg-Verlag GmbH, BraunschweigCrossRefGoogle Scholar
  104. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S. (2007): Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 1–12CrossRefGoogle Scholar
  105. Trommer, H. (2009): Die Gute Herstellpraxis bei der industriellen Fertigung von Arzneimitteln. Apotheken-Magazin, Gebr. Storck GmbH & Co. Verlags oHG, Oberhausen, 8–14Google Scholar
  106. Twyman, R. M., Stoger, E., Schillberg, S., Christou, P., Fischer, R. (2003): Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 21: 570–578PubMedCrossRefGoogle Scholar
  107. Ulber, R., Frerichs, J. G., Beutel, S. (2003): Optical sensor systems for bioprocess monitoring. Anal. Bioanal. Chem. 376: 342–348PubMedGoogle Scholar
  108. Urlaub, G., Chasin, L. A. (1980): Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA 77: 4216–4220PubMedCrossRefGoogle Scholar
  109. Verhar, G. A., Keyt, B., Eaton, D., Rodriguez, H., O’Brien, D. P., Rotblat, F., Oppermann, H., Keck, R., Wood, W. I., Harkins, R. N., Tuddenham, E. G. D., Lawn, R. M., Capon, D. J. (1984): Structure of human factor VIII. Nature 312: 337–342CrossRefGoogle Scholar
  110. Voisard, D., Meuwly, F., Ruffieux, P.-A., Baer, G., Kadouri, A. (2003): Potential of cell retention techniques for largescale high-density perfusion culture of suspended mammalian cells. Biotechnol. Bioeng. 82: 751–765PubMedCrossRefGoogle Scholar
  111. Vorlop, J., Lehmann, J. (1989): Oxygen transfer and carrier mixing in large scale membrane stirred culture reactors. In: Spier, R. E., Griffith, J. B., Stephenne, J., Crooy, P. J.: Advances in Animal Cell Biology and Technology for Bioprocesses. Butterworths, Svenoaks, UK, 366–369Google Scholar
  112. Werner, R. G., Hoffmann, H. (1989): Biotechnische Produktion einer neuen Generation von Arzneimitteln: Therapie mit körpereigenen Wirkstoffen. Praxis der Naturwissenschaften/Chemie 38: 3–12Google Scholar
  113. Werner, R. G., Merk, W., Walz, F. (1988): Fermentation with immobilized cell cultures. Arzneimittelforschung 38(2): 320–325PubMedGoogle Scholar
  114. Yamane, I. (1978): Role of bovine serum albumin in a serumfree culture medium and its application. Natl. Cancer Inst. Monogr. 48: 131–133PubMedGoogle Scholar
  115. Young, M. W., Okita, W. B., Brown, E. M., Curling, J. M. (1997): Production of biopharmaceutical proteins in the milk of transgenic dairy animals. BioPharm. 10: 34–38Google Scholar
  116. Zhang, W. J., Collins, A., Knyazev, I., Gentz, R. (1998): Highdensity perfusion culture of insect cells with a BioSep ultrasonic filter. Biotechnol. Bioeng. 59: 351–359PubMedCrossRefGoogle Scholar
  117. Zhang, X. C. (2002): Terahertz wave imaging: Horizons and hurdles. Phys. Med. Biol. 47(21): 3667–3677PubMedCrossRefGoogle Scholar

Copyright information

© Spektrum Akademischer Verlag Heidelberg 2011

Authors and Affiliations

  • Michael Howaldt
    • 1
  • Franz Walz
    • 1
  • Ralph Kempken
    • 1
  1. 1.Boehringer Ingelheim Pharma GmbH & Co. KGBiberach

Personalised recommendations