Advertisement

Aufarbeitung (Downstream Processing)

  • Horst Chmiel
  • Jürgen Friedle
  • Tim Schroeder
  • Stefanie Schuldt
  • Torsten Winkelnkemper
  • Gerhard Schembecker

Zusammenfassung

Biokatalysatoren — gleichgültig, ob in Form von Enzymen, Prokaryoten oder Eukaryoten — haben sich als wesentlich spezifischer und damit wirkungsvoller als irgendein anorganischer Katalysator erwiesen. Wegen ihres begrenzten Temperatureinsatzbereiches — für die meisten von ihnen wirken Temperaturen über 50 °C bereits deaktivierend — und weil sie in der Regel nur in verdünnten wässrigen Systemen agieren, büßen sie aber einen großen Teil dieses Vorteils wieder ein. Hohe Kosten (für Enzyme) bzw. geringe Wachstumsgeschwindigkeiten (bei Prokaryoten und insbesondere Eukaryoten) tun ein Übriges.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aruna, N., Lali, A. (2001): Purification of a plant peroxidase using reversibly soluble ion-exchange polymer. Process Biochem. 37: 431–437CrossRefGoogle Scholar
  2. Asenjo, J. A., Andrews, B. A. (2004): Is there a rational method to purify proteins? From expert systems to proteomics. J. Mol. Recognit. 17: 236–247PubMedCrossRefGoogle Scholar
  3. Baker, R. W., Wijmans, J. G., Athayde, A. L. (1997): The effect of concentration polarisation of volatile organic compounds from water by pervaporation. J. Memb. Sci. 137: 159–172CrossRefGoogle Scholar
  4. Baker, R. W. (2004): Membrane Technology and Applications. John Wiley & Sons, Ltd., ChichesterCrossRefGoogle Scholar
  5. Baldwin, C. V., Robinson, C. W. (1994): Enhanced disruption of Candida utilis using enzymatic pretreatment and high pressure homogenization. Biotechnol. Bioeng. 43: 46–56PubMedCrossRefGoogle Scholar
  6. Bauer, B., Gerner, F. J., Strathmann, H. (1988): Development of Bipolar Membranes. Desalination 68: 279CrossRefGoogle Scholar
  7. Bauer, B., Chmiel, H., Menzel, T., Strathmann, H. (1991): Separation of Bioreactor Constituents by Electrodialysis with Bipolar Membranes. Proc. II. Congr. f. Biochem. Eng. Gustav Fischer Verlag, StuttgartGoogle Scholar
  8. Bauer, K., Schembecker G. (2008): Synthesis of downstream processes. Chemie Ingenieur Technik 80(1–2): 185–190CrossRefGoogle Scholar
  9. Bell, D. J., Hoare, M., Dunnill P. (1983): Advances in Biochemical Engineering. Springer-Verlag Vol. 26, 1–72CrossRefGoogle Scholar
  10. Bensch, M., Selbach, B., Hubbuch, J. (2007): High throughput screening techniques in downstream processing: Preparation, characterization and optimization of aqueous twophase systems. Chem. Eng. Sci. 62(7): 2011–2021CrossRefGoogle Scholar
  11. Bensch, M., Wierling, P. S., von Lieres E., Hubbuch, J. (2005): High throughput screening of chromatographic phases for rapid process development. Chem. Eng. Technol. 28(11): 1274–1284CrossRefGoogle Scholar
  12. Blöcher, C. (2004): Einsatz getauchter keramischer Mehrkanal-Flachmembranen in Bioreaktoren. upt-Schriftenreihe, Band 1Google Scholar
  13. Blume, I., Schwerin, P., Mulder, M., Smolders, C. (1991): Vapour sorption and permeation properties of poly (dimethylsiloxane) films. J. Memb. Sci.: 61–85Google Scholar
  14. Böddeker, K. W. (1994): Recovery of volatile bioproducts by pervaporation. Proceed. of the NATO Advanced Study Institute, Kluwer Academic Publisher, Chapter 1.10Google Scholar
  15. Börgardts, P. (1996): Prozessentwicklung zur kombinierten Produktgewinnung und Abwasserreinigung am Beispiel der Milchsäreproduktion aus Molke. Fraunhofer IRBVerlagGoogle Scholar
  16. Börgardts, P., Krischke, W., Trösch, W., Brunner, H. (1998): Integrated bioprocess for the simultaneous production of lactic acid and dairy sewage treatment. Bioprocess Engineering 19: 321–329, Springer-VerlagCrossRefGoogle Scholar
  17. Bora, M. M., Borthakur, S., Rao, P. C., Dutta, N. N. (2005): Aqueous two-phase partitioning of cephalosporin antibiotics: effect of solute chemical nature. Separation and Purification Technology 45(2): 153–156CrossRefGoogle Scholar
  18. Bräutigam, S., Dennewald, D., Schürmann, M., Lutje-Spelberg, J., Pitner, W.-R., Weuster-Botz, D. (2009): Whole-cell biocatalysis: Evaluation of new hydrophobic ionic liquids for efficient asymmetric reduction of prochiral ketones. Enzyme Microb. Technol. 45: 310–316CrossRefGoogle Scholar
  19. Britsch, L., Schroeder, T., Friedle, J. (2008): Small Scale Parallelized Biochromatography, GEN, August: 56–57Google Scholar
  20. Britsch, L., Schroeder, T., Friedle, J. (2008): Automated, High-Throughput Chromatographic Separation of Biological Compounds. Am. Biotechnol. Lab. 26(6): 20–23Google Scholar
  21. Brookmann, J. S. G. (1974): Mechanism of cell disintegration in a high pressure homogenizer. Biotechnol. Bioeng. 16: 371–383CrossRefGoogle Scholar
  22. Brooks, C. A., Cramer, S. M. (1992): Steric mass-action ion exchange: Displacement profiles and induced salt gradients. AIChE Journal 38(12): 1969–1978CrossRefGoogle Scholar
  23. Brou, A., Jaffrin, M. Y., Ding, L. H., Courtois, J. (2003): Microfiltration and ultrafiltration of polysacchrides produced by fermentation using a rotating disc dynamic filtration system. Biotechnol. Bioeng. 82: 429–437PubMedCrossRefGoogle Scholar
  24. Brunner, K.-H (1979): Theoretische und experimentelle Untersuchung der Feststoffabscheidung in Tellerseparatoren. Dissertation ErlangenGoogle Scholar
  25. Brunner, K.-H. (1988): Sterildesign und-betrieb von Zentrifugalseparatoren. DECHEMA-Monographien Band 113, VCHGoogle Scholar
  26. Chartogne, A., Reeuwijk, B., Hofte, B., Heijden, R., Tjaden, U. R., Greef, J. (2002): Capillary electrophoretic separations of proteins using carrier ampholytes. J. Chromatogr. A 959: 289–298Google Scholar
  27. Chae, Y. K., Jeon, W., Cho, K. S. (2002) Rapid and simple method to prepare functional pfu DNA polymerase expressed in Escherichia coli periplasm. J. Microbiol. Biotech. 12: 841–843Google Scholar
  28. Chmiel, H. (1971): Wärmeübergang in der turbulenten Rohrströmung viskoelastischer Flüssigkeiten. Dissertation, AachenGoogle Scholar
  29. Chmiel, H., Strathmann, H., Streicher, E., Schneider, H. (1983): Membranen in der medizinischen Verfahrenstechnik. Chem. Ing. Techn. 55: 282–292CrossRefGoogle Scholar
  30. Chmiel, H., Gudernatsch, W., Howaldt, M. (1988): Integrated Downstream Processing with Membranes. Chem. Biochem. Eng. Q 2(4): 184–191Google Scholar
  31. Chmiel, H., Lefebvre, X., Mavrov, V., Noronha, M., Palmeri, J. (2006): Computer Simulation of Nanofiltration Mem branes and Processes. In: Rieth, M., Schommers, W. (Hrsg.) Handbook of Theoretical and Computational Nanotechnology. American Scientific Publishers, Los AngelesGoogle Scholar
  32. Coffman, J. L., Kramarczyk, J. F., Kelley, B. D. (2008): Highthroughput screening of chromatographic separations: I. Method development and column modeling. Biotechnolog. Bioeng. 100(4): 605–618CrossRefGoogle Scholar
  33. Cohn, E. J. (1932): Naturwissensch. 20: 663CrossRefGoogle Scholar
  34. Commission of the European Communities (1989): Guide to good manufacturing of medicinal productsGoogle Scholar
  35. Cornelissen, G., Bertelsen, H.-P., Hahn, B., Schultz, M., Scheffler, U., Werner, E., Leptien, H., Krüß, S., Jansen, A.-K., Gliem, T., Hielscher, M., Wilhelm, B.-U., Sowa, E., Radeke, H. H., Luttmann, R. (2003): Herstellung rekombinanter Proteine mit Pichia pastoris in integrierter Prozessführung. Chem. Ing. Techn. 75: 281–290CrossRefGoogle Scholar
  36. Cunha, T., Aires-Barros, R. (2002): Large scale extraction of proteins. Mol. Biotechnol. 20: 29–40PubMedCrossRefGoogle Scholar
  37. Curie, J. A., Dunnill, P., Lilly, M. D. (1972): Release of protein from baker’s yeast by disruption in an industrial agitator mill. Biotechnol. Bioeng. 14: 725–736CrossRefGoogle Scholar
  38. Cziner, K., Virkki-Hatakka, T., Hurme, M., Turunen, I. (2005): Evaluative approach for process development. Chem. Eng. Technol. 28(12): 1490–1499CrossRefGoogle Scholar
  39. Dhariwal, A. (2007): The significance of submerged ceramic membrane systems for production oriented bioprocesses. Dissertation, Universität SaarbrückenGoogle Scholar
  40. Engler, C. R., Robinson, C. W. (1981): Effects of organism type and growth conditions on cell disruption. Biotechnol. Letters 3, 83CrossRefGoogle Scholar
  41. Fonseca, L. P., Cabral, J. M. S. (2002): Penicillin acylase release from Escherichia coli cells by mechanical cell disruption and permeabilization. J. Chem. Technol. Biotechnol. 77: 159–167CrossRefGoogle Scholar
  42. Fraud, N., Kuczewski, M., Zarbis-Papastoitis, G., Hirai, M. (2009): Hydrophobic membrane adsorber for large-scale downstream processing. BioPharm. Intern. 10: 24–27Google Scholar
  43. Frerix, A., Muller, M., Kula, M.R. Hubbuch, J.(2005): Scalable recovery of plasmid DNA based on aqueous two-phase separation. Biotechnology and Applied Biochemistry 42, 57–66PubMedCrossRefGoogle Scholar
  44. Friedle, J. (2008): Chromatography media scouting. Euro. Biotech. News 5–6(7): 41–42Google Scholar
  45. General Electric (1982): Perm selective membranes. http://mempro.com/m213td.htmlGoogle Scholar
  46. Ghirisan, A., Hofmann, R., Posten, C. (2005): Press-und Presselektrofiltration einer Hefesuspension. Filtrieren und Separieren 19(3): 118–122Google Scholar
  47. Giovannoni, L., Ventani, M., Gottschalk, U. (2009): Antibody purification using membrane adsorbers. BioPharm. Intern. 10: 28–32Google Scholar
  48. Gözke, G., Posten, C. (2010): Electrofiltration of Biopolymers. Food Eng. Rev. 2(2): 131–146CrossRefGoogle Scholar
  49. Greve, A., Kula, M. R. (1991): Recycling of salts in partition protein extraction process. J. Chem. Techn. Biotechnol. 50: 27–42CrossRefGoogle Scholar
  50. Gruber, T., Chmiel, H., Käppeli, O., Sticher, P., Fiechter, A. (1993): Integrated process for continuous rhamnolipid biosynthesis. In: Kosaric, N. (Hrsg.), Biosurfactants, Marcel Dekker, New York: 157–173Google Scholar
  51. Gudernatsch, W., Kimmerle, K., Strathmann, H., Chmiel, H. (1987): Continous Removal of Ethanol from Fermentation Broths by Pervaporation. In: Chmiel, H., Hammes, W. P., Bailey, J. E. (Hrsg.): Biochemical Engineering. Gustav Fischer Verlag, StuttgartGoogle Scholar
  52. Hannig, K., Wirth, H., Meyer, B., Zeiller, K. (1975): Free-Flow Electrophoresis I. Theoretical and Experimental Investigations. Hoppe Seyler’s Z. Physiol. Chem. 356: 1209PubMedCrossRefGoogle Scholar
  53. Harjo, B., Wibowo, C., Ng, K. M. (2004): Development of natural product manufacturing processes: Phytochemicals. Chemical Engineering Research & Design 82(A8): 1010–1028Google Scholar
  54. Harrison, R. G., Todd, P., Rudge, S. R., Petrides, D. P. (2003): Bioseparation Science and Engineering. Oxford University Press, New York, OxfordGoogle Scholar
  55. Hetherington, P. J., Follows, M., Dunnill, P., Lilly, M. D. (1971): Release of protein from baker’s yeast by disruption in an industrial homogenizer. Trans. Inst. Chem. Eng. 49: 142–148Google Scholar
  56. Hilbrig, F., Freitag, R. (2003): Protein purification by affinity precipitation. J. Chromatogr. 790: 79–90Google Scholar
  57. Hofmann, R., Posten, C. (2003): Improvement of dead-end filtration of biopolymers with pressure electrofiltration. Chem. Eng. Sci. 58(17): 38473858Google Scholar
  58. Hoffstetter-Kuhn, S. (1989): Untersuchungen zum Scale-up der Free-Flow-Elektrophorese am Beispiel der Anreicherung von Alkoholdehydrogenase aus Saccharomyces cerevisiae. Dissertation, SaarbrückenGoogle Scholar
  59. Howaldt, M. (1988): Reaktionstechnische Untersuchungen gekoppelter coenzymabhängiger Enzymsysteme in Membranreaktoren. Dissertation, TU StuttgartGoogle Scholar
  60. Hunter, R.J., (1981): Zeta Potential in Colloid Science, Academie Press, Sydney, 3. Auflage. 1981Google Scholar
  61. Hustedt, H. (1986): Extractive enzyme recovery with simple recycling of phase forming chemicals. Biotechnol. Lett. 8: 791–796CrossRefGoogle Scholar
  62. Hustedt, H., Kroner, K. H., Kula, M.-R. (1985): Applications of Phase Partitioning in Biotechnology. In: Walter, H., Brooks, D. E., Fisher, D. (Hrsg.) Partitioning in Aqueous Two-Phase-Systems. Academic Press, Inc. Orlando, 529–587Google Scholar
  63. Hustedt, H., Kroner, K. H., Papamichael, N., Menge, U. (1987): Verteilung zwischen wäßrrigen Phasen unter Mikrogravität. Bio-Engineering 1: 12–29Google Scholar
  64. Imamoglu, S. (2002): Simulated moving bed chromatography (SMB) for applications in bioseparation. Adv. Biochem. Eng./Biotechn. 76: 211–231Google Scholar
  65. Issaq, H. J., Conrads, T. P., Janini, G. M., Veenstra, T. D. (2002): Methods for fractionation, separation and profiling of proteins and peptides. Electrophoresis 23: 3048–3061PubMedCrossRefGoogle Scholar
  66. Johansson, G., Kopperschläger, G., Albertsson, P. A. (1983): Affinity partitioning of phosphofructokinase from baker’s yeast using polymer-bound cibacron blue F3 G-A. Eur. J. Biochem. 131: 589–594PubMedCrossRefGoogle Scholar
  67. Kaen, H. (1999): Elektrokinetische Phänomene. Verlag der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-naturwissenschaftliche Klasse, Band 127, Heft 5Google Scholar
  68. Kalyanpur, M. (2002): Downstream processing in the biotechnology industry. Mol. Biotechnol. 22: 87–98PubMedCrossRefGoogle Scholar
  69. Kelley, B. D., Switzer, M., Bastek, P., Kramarczyk, J. F., Molnar, K., Yu, T, Coffman J. L. (2008): High-throughput screening of chromatographic separations: IV. Ion-exchange. Biotechnol. Bioeng. 100(5): 950–963PubMedCrossRefGoogle Scholar
  70. Kepka, C., Collet, E. Roos, F., Tjerneld, F. Veide, A. (2005): Two-step recovery process for tryptophan tagged cutinase: interfacing aqueous two-phase extraction and hydrophobic interaction chromatography. J. Chromatogr. A 1075: 33–41PubMedCrossRefGoogle Scholar
  71. Koberstein, E., Lehmann, E. (1986): Europ. Patent 0232386 A1Google Scholar
  72. Krämer, P., Bomberg, A. (1990): Neuere Anwendung von Staustrahlströmungen in der Aufarbeitung von Bioprodukten. Chem. Ing. Tech. 62(2): 126–127CrossRefGoogle Scholar
  73. Kramarczyk, J. F., Kelley, B. D., Coffman, J. L. (2008). Highthroughput screening of chromatographic separations: II. Hydrophobic interaction. Biotechnol. Bioeng. 100(4): 707–720PubMedCrossRefGoogle Scholar
  74. Kula, M. R. (1990): Trends and future of aqueous two-phase extraction. Bioseparation 1: 181–189PubMedGoogle Scholar
  75. Kula, M. R., Kroner, K. H., Hustedt, H. (1982): Purification of Enzymes by Liquid-Liquid Extraction. In: Fiechter, A. (Hrsg.) Advances in Biochemical Engineering/Biotechnology, Vol. 24. Springer-Verlag, Berlin, Heidelberg, New York, 73–118Google Scholar
  76. Kula, M. R., Schütte, H., Vogels, C., Frank, A. (1990): Cell disintegration for the purification of intracellular proteins. Food Biotechnol. 4: 169–183CrossRefGoogle Scholar
  77. Kula, M. R., Selber, K. (1999): Protein purification, aqueous liquid extraction. In: Flickinger, M. C., Drew, S. W. (Hrsg.) Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation. Wiley, New York, 2179–2191Google Scholar
  78. Lee, C. T., Movreale, G., Middelberg, A. P. J. (2004): Combined infermenter extraction and cross-flow microfiltration for improved inclusion body processing. Biotechn. Bioeng. 85: 103–113CrossRefGoogle Scholar
  79. Lemmlich, R. (1972): Adsorptive bubble separation technique. Academic Press, New York, LondonGoogle Scholar
  80. Limon-Lason, J., Haare, J., Orsborn, C. B., Doyle, D. J., Dunnill, P. (1983): Experiences with a 20 litre industrial bead mill for the disruption of microorganisms. Enzyme Microb. Technol. 5: 143–148CrossRefGoogle Scholar
  81. Lin, D.-Q., Brixius, P. J., Hubbuch, J. J., Thömmes, J., Kula, M. R. (2003): Biomass/adsorbent electrostatic interactions in expanded bed adsorption: α zeta potential study. Biotechnol. Bioeng. 83: 149–157PubMedCrossRefGoogle Scholar
  82. Lipnizki, F., Hausmann, S., Laufenberg, G., Field, R., Kunz, B. (2000): Use of pervaporation-bioreactor hybrid process in biotechnology. Chem. Eng. Technol. 23: 569–577CrossRefGoogle Scholar
  83. Lutzer, R. G., Robinson, C. W., Glick, B. R. (1994): Two stage process for increasing cell disruption of E. coli for intracellular products recovery. In: Proceedings of the 6th European Congress of Biotechnology, Elsevier Sciences B. V., Amsterdam, 111–121Google Scholar
  84. Maltzahn, B. (2005): Design und Modellierung eines integrierten Bioprozesses zur Produktion natürlicher Aromastoffe. Dissertation, Universität ErlangenGoogle Scholar
  85. Matis, K. A., Blöcher, C., Mavrov, V., Chmiel, H., Lazaridis, N. (2003): Verfahren und Vorrichtung zur membranunterstützten Flotation. Patent DE 10214457.5Google Scholar
  86. Mavrov, V., Chmiel, H., Kaschek, M. (2003): Verfahren zur Entfernung von Bestandteilen, wie Schwebstoffen und kolloidalen Verbindungen aus wässrigen Lösungen. Patent DE 10015113.2Google Scholar
  87. Maximini, A. (2004): Trägergestützte Flüssigkeitsmembranen zur Trennung von Enantiomeren am Beispiel N-geschützter Aminosäurederivate. Dissertation, Universität Saarbrücken, LS für ProzesstechnikGoogle Scholar
  88. Melin, T., Rautenbach, R. (2007): Membranverfahren. Springer-VerlagGoogle Scholar
  89. Middleberg, A. P. J. (2000): Microbial cell disruption by high pressure homogenization. In: Dessai, M. A. (Hrsg.) Methods in Biotechnology, Vol. 9; Downstream Processing of Proteins: Methods and Protocols. Pub. Humana Press Inc., Totowa New YorkGoogle Scholar
  90. Mogren, H., Lindblom, M., Hedenskoy, G. (1974): Mechanical disintegration of microorganisms in an industrial homogenizer. Biotechnol. Bioeng. 16: 261–274CrossRefGoogle Scholar
  91. Mölls, H., Hörnle, R. (1971): Wirkungsmechanismus der Naßzerkleinerung in der Rührwerkskugelmühle. Dechema-Monographie 69, Tl. 2: 631–661Google Scholar
  92. Nfor, B. K., Ahamed, T., van Dedem, G. W. K., van der Wielen, L. A. M., van de Sandt, E. J. A. X., Eppink, M. H. M., Ottens, M. (2008): Design strategies for integrated protein purification processes: challenges, progress and outlook. J. Chem. Technol. Biotechnol. 83(2): 124–132CrossRefGoogle Scholar
  93. Nfor, B. K., Verhaert, P., van der Wielen, L., Hubbuch, J., Ottens, M. (2009): Rational and systematic protein purification process development: the next generation. Trends Biotechnol. 27(12): 673–679PubMedCrossRefGoogle Scholar
  94. Pai, R., Doherty, M., Malone, M. (2002): Design of reactive extraction systems for bioproduct recovery. AICHE J. 48: 514–526CrossRefGoogle Scholar
  95. Rautenbach, R., Gröschl, A.. (1990): Separation Potential of Nanofiltration Membranes. Desalination 77, 73–84Google Scholar
  96. Rehacek, J., Beran, K., Bicik, V. (1969): Disintegration of microorganisms and preparation of yeast cell walls in a new type of disintegrator. Appl. Microbiol. 17: 462–466PubMedGoogle Scholar
  97. Reif, O.-W., Scheper, T. (2004): Aufreinigung. Antranikian: Angewandte Mikrobiologie. Springer-Verlag, 429–443Google Scholar
  98. Reis, R., Zydney, A. (2007): Bioprocess membrane technology. J. Memb. Sci. 297: 16–50CrossRefGoogle Scholar
  99. Richter, K., Nottelmann, S. (2004): An empiric steady state model of lactate production in continuous fermentation with total cell retention. Eng. Life Sci. 4: 426–432CrossRefGoogle Scholar
  100. Rito-Palomaris, M. (2004): Practical application of aqueous two-phase partition to process development for the recovery of biological products. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 807(1), 3–11CrossRefGoogle Scholar
  101. Rito-Palomaris. M. und Lyddiatt. A. (2002): Process integration using aqueous two-phase systems. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 711(1–2), 81–90Google Scholar
  102. Rüffer, N., Heidersdorf, U., Kretzers, I., Sprenger, G. A., Raeven, L., Takors, R. (2004): Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst. Eng. 26: 239–248PubMedCrossRefGoogle Scholar
  103. Sartor, M. (2006): Untersuchungen zum Einfluss elektrokinetischer Repulsationseffekte auf die Tiefenfiltration mit partikulären Schüttbetten. Dissertation, Universität des Saarlandes, upt-Schriftenreihe 8Google Scholar
  104. Sartor, M., Kaschek, M., Mavrov, V., Chmiel, H. (2008): Untersuchungen zum Einfluss elektrokinetischer Wechselwirkungen auf die Adsorptionsmechanismen bei der Tiefenfiltration. Chem. Ing. Tech. 80(6): 855–859CrossRefGoogle Scholar
  105. Schembecker, G. (2006): Prozesssynthese in der Trenntechnik. In: Goedecke, R. (Hrsg.) Fluidverfahrenstechnik — Grundlagen, Methodik, Technik, Praxis. Wiley-VCH, Weinheim, 38–86Google Scholar
  106. Scheuermann, E. A. (1989): Filtrieren und Separieren: Versuch einer Eingrenzung. Filtration and Separation 2: 260Google Scholar
  107. Schlünder, E. U., Thurner, F. (1986): Destillation, Absorption, Extraktion. Georg Thieme Verlag, Stuttgart, New YorkGoogle Scholar
  108. Schmidt, S., Wu, P., Konstantinov, K., Kaiser, K., Kauling, J., Henzler, H.-J., Vogel, J. H. (2003): Kontinuierliche Isolierung von Pharmawirkstoffen mittels annularer Chromatographie. Chem. Ing. Techn. 75: 302–305CrossRefGoogle Scholar
  109. Schügerl, K. (2000): Integrated processing of biotechnology products. Biotechn. Advanc. 18: 581–599CrossRefGoogle Scholar
  110. Schütte, H., Kroner, K. H., Kula, M.-R. (1983): Experiences with a 20 litre industrial bead mill for the disruption of microorganisms. Enzyme Microb. Technol. 5: 143–148CrossRefGoogle Scholar
  111. Schütte, H., Kula, M.-R. (1986): Einsatz von Rührwerkskugelmühlen und Hochdruckhomogenisatoren für den technischen Aufschluß von Mikroorganismen. Biotech-Forum 3, Heft 2Google Scholar
  112. Schultze, B. (1989): Schaumfraktionierung von Biotensiden. Diplomarbeit, StuttgartGoogle Scholar
  113. Schustolla, D., Ledoux, C., Papamichael, N., Hustedt, H. (1989): Reactive (affinity) extraction of enzymes from biomass. Ber. Bunsenges. Phys. Chem. 93: 971–975CrossRefGoogle Scholar
  114. Shin, Y. O., Wahnon, D., Weber, M. E., Vera, J. H. (2004): Selective precipitation and recovery of xylanase using surfactant and organic solvent. Biotechnol. Bioeng. 88: 698–706CrossRefGoogle Scholar
  115. Stefer, B. (2004): Bioprozesstechnische Charakterisierung eines organophilen Pervaporation-Bio-Hybridreaktors am Beispiel einer Aromabiosynthese. Dissertation, Universität Bonn, Fortschritt-Berichte VDI, Reihe 3, Nr. 814Google Scholar
  116. Stehr, N., Schwedes, J. (1983): Verfahrenstechnische Untersuchungen an einer Rührwerkskugelmühle. Aufbereitungs-Technik 10: 597–604Google Scholar
  117. Strathmann, H., Chmiel, H. (1984): Die Elektrodialyse — ein Membranverfahren mit vielen Anwendungsmöglichkeiten. Chem. Ing. Tech 56: 214CrossRefGoogle Scholar
  118. Strathmann, H. (2004): Ion-exchange membrane separation processes. Elsevier Spektrum-Verlag, HeidelbergGoogle Scholar
  119. Strathmann, H (2010): Electromembrane Processes: Basic Aspects and Applications. Elsevier Verlag Comprehensive Membrane Science and Engineering, volume 2, 391–429Google Scholar
  120. Strathmann, H. (2009): Ion-Exchange Membrane Processes in Water Treatment. In: Escobar, I. C., Schäfer, A. I. (Hrsg.) Sustainability Science and Engineering, Vol 2, Sustainable Water for the Future. Elsevier, Amsterdam, The Netherlands, 141–199Google Scholar
  121. Susanto, A., Knieps-Grunhagen, E., von Lieres, E., Hubbuch, J. (2008): High Throughput Screening for the Design and Optimization of Chromatographic Processes: Assessment of Model Parameter Determination from High Throughput Compatible Data. Chem. Eng. Technol. 31(12): 1846–1855CrossRefGoogle Scholar
  122. Susanto, A., Treier, K., Knieps-Gruenhagen, von Lieres, E., Hubbuch, J. (2009): High Throughput Screening for the Design and Optimization of Chromatographic Processes: Automated Optimization of Chromatographic Phase Systems. Chem. Eng. Technol. 32(1): 140–154CrossRefGoogle Scholar
  123. Takors, R. (2004a): Ganzzell — ISPR — Prozessentwicklung: Chancen und Risiken. Chem. Ing. Techn. 76: 1857–1864CrossRefGoogle Scholar
  124. Takors, R. (2004b): Model-based analysis and optimization of an ISPR approach using reactive extraction for pilot-scale L-phenylalanine production. Biotechnol. Prog. 20: 57–64PubMedCrossRefGoogle Scholar
  125. U.S. Food and Drug Administration, Center for Drugs, Biologics, Devices and Radiologic Health (1987): Guidlines on general principles of process validations, Rickville, MD.Google Scholar
  126. Vogels, G., Kula, M. R. (1992): Combination of enzymatic and/or thermal pretreatment with mechanical cell disintegration. Chem. Eng. Sci. 47: 127–131Google Scholar
  127. Wagner, H., Blasius, E. (1989): Praxis der elektrophoretischen Trennverfahren. Springer-Verlag, Berlin-HeidelbergCrossRefGoogle Scholar
  128. Wahlund, P. O., Gustavson, P. E., Izumrudov, V. A., Larsson, P. O., Galaev, I. Y. (2004): Precipitation by polycation as capture step in purification of plasmid DNA from a clarified lysate. Biotechnol. Bioeng. 87: 675–684PubMedCrossRefGoogle Scholar
  129. Wekenborg, K., Susanto, A., Fredriksen, S. S., Schmidt-Traub, H. (2004): Nichtisokratische SMB-Trennung von Proteinen mittels Ionenaustauschchromatographie. Chem. Ing. Techn. 76: 815–819CrossRefGoogle Scholar
  130. Wensel, D. L., Kelley, D. B., Coffman, J. L. (2008): Highthroughput screening of chromatographic separations: III. Monoclonal antibodies on ceramic hydroxyapatite. Biotechnol. Bioeng. 100(5): 839–854PubMedCrossRefGoogle Scholar
  131. Weuster-Botz, D. (2007): Process Intensification of whole-cell biocatalysis with ionic liquids. Chem. Rec. 7: 334–340PubMedCrossRefGoogle Scholar
  132. Weyd, M., Richter, H., Puhlfürß, P., Voigt. I., Hamel, Ch., Seidel-Morgenstern, A. (2008): Transport of binary waterethanol mixtures through a multilayer hydrophobic zeolite membrane. Journal of Membrane Science 307, 239–248CrossRefGoogle Scholar
  133. Wiendahl, M., Schulze Wierling, P., Nielsen, J., Fomsgaard Christensen, D., Krarup, J., Staby, A., Hubbuch, J. (2008): High Throughput Screening for the Design and Optimization of Chromatographic Processes — Miniaturization, Automation and Parallelization of Breakthrough and Elution Studies. Chem. Eng. Technol. 31(6): 893–903CrossRefGoogle Scholar
  134. Willson, R. C. (1985): Supercritical Fluid Extraction. In: Comprehensive Biotechnology, Vol. 2, 567–574Google Scholar
  135. Winkelnkemper, T., Schembecker, G. (2010a): Purification fingerprints for experimentally based systematic downstream process development. Separation and Purification Technology 71(3): 356–366CrossRefGoogle Scholar
  136. Winkelnkemper, T., Schembecker, G. (2010b): Purification performance index and separation cost indicator for experimentally based systematic downstream process development. Separation and Purification Technology 72(1): 34–39CrossRefGoogle Scholar
  137. Winkelnkemper, T., Schuldt, S., Schembecker, G. (2011): Systematic downstream process development for purification of baccatin III with key performance indicators. Separation and Purification Technol., im Druck. DOI 10.1016/j. suppur. 2011.01.004Google Scholar
  138. Wyss, A., von Stockar, V., Marison, I. W. (2004): Production and characterization of liquid-core capsules made from cross-linked acrylamid copolymers for biotechnological applications. Biotechnol. Bioeng. 5: 563–572CrossRefGoogle Scholar
  139. Xiu, Z. L., Zeng, A. P. (2008): Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78(6): 917–926PubMedCrossRefGoogle Scholar
  140. Zelić, B., Gostović, S., Vuorilehto, K., Vasić-Rački, D., Takors, R. (2004): Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol. Bioeng. 85: 638–646PubMedCrossRefGoogle Scholar
  141. Zhou, J. X., Solamo, F., Hong, T. Shearerer, M. Tressel, T. (2008): Viral clearance using disposable systems in monoclonal antibody commercial downstream processing. Biotechnol. Bioeng. 100: 488–496PubMedCrossRefGoogle Scholar

Copyright information

© Spektrum Akademischer Verlag Heidelberg 2011

Authors and Affiliations

  • Horst Chmiel
    • 1
  • Jürgen Friedle
    • 2
  • Tim Schroeder
    • 2
  • Stefanie Schuldt
    • 3
  • Torsten Winkelnkemper
    • 4
  • Gerhard Schembecker
    • 3
  1. 1.audita Unternehmensberatung GmbHMünchen
  2. 2.Atoll GmbHWeingarten
  3. 3.Lehrstuhl für Anlagen- und ProzesstechnikTechnische Universität DortmundDortmund
  4. 4.Winkelnkemper GmbHWadersloh

Personalised recommendations