Advertisement

Strukturelle und funktionelle Veränderungen bei Schizophrenie

Conference paper
  • 75 Downloads

Zusammenfassung

In der ersten Hälfte des 20. Jahrhunderts war die psychiatrische Grundlagenforschung stark neuroanatomisch und neuropathologisch orientiert. Methoden zur nichtinvasiven Darstellung des Gehirns am lebenden Menschen fehlten damals gänzlich. Mit der Einführung neuerer Untersuchungsmethoden wie CT (erstes nichtinvasives Verfahren, was die morphologische Darstellung des Gehirns erlaubte), MRT, fMRT, SPECT und PET kam es zu einem Aufschwung neuromorphologischer Untersuchungen bei psychiatrischen Patienten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Lawrie SM, Abukmeil SS (1998) Brain abnormality in schizophrenia. A systematic and quantitative review of magnetic resonance imaging studies. Br J Psychiatry 172:110–120PubMedCrossRefGoogle Scholar
  2. 2.
    Vogeley K, Schneider-Axmann T, Pfeiffer U, Tepest R, Beyer TA, Bogerts B, Honer WG, Falkert P (2000) Disturbed gyrification of the prefrontal region in male schizophrenic patients: A morphometric postmortem study. Am J Psychiatry 157: 34–39PubMedGoogle Scholar
  3. 3.
    Buchsbaum MS (1990) The frontal lobes, basal ganglia, and temporal lobes as sites for schizophrenia. Schizophr Bull 16: 379–387PubMedCrossRefGoogle Scholar
  4. 4.
    Wiesel FA, Wik G, Sjörgren I, Blomquvist G, Greitz T, Stone-Elander S (1987) Regional brain glucose metabolism in drug free schizophrenic patients and clinical correlates. Acta Psychiatr Scand 76: 628–641PubMedCrossRefGoogle Scholar
  5. 5.
    Volkow ND, Wolf AP, van Gelder P, Brodie JD, Overall J, Cancro R, Gomez-Mont F (1987) Phenomenological correlates of metabolic activity in 18 patients with chronic schizophrenia. Am J Psychiatry 144:151–158PubMedGoogle Scholar
  6. 6.
    DeLisi LE, Buchsbaum MS, Holcomb HH, Dowling Zimmermann S, Pickar D, Boronow J, Morihisa JM, van Kämmen DP, Carpenter W, Kessler R (1985) Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients. Am J Psychiatry 142: 78–81PubMedGoogle Scholar
  7. 7.
    Andreasen NC, Rezai KA, R., Swayze VW, Flaum M, Kirchner P, Cohen G, O’Leary DS (1992) Hypofrontality in neuroleptic-naiv patients and in patients with chronic schizophrenia. Arch Gen Psychiatry 49: 943–958PubMedCrossRefGoogle Scholar
  8. 8.
    Bogerts B, Meertz ER, Schonfeldt-Bausch R (1985) Basal ganglia and limbic system pathology in schizophrenia: a morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 42:784–791PubMedCrossRefGoogle Scholar
  9. 9.
    Schlaepfer TE, Harris GJ, Tien AY, Peng LW, Lee S, Federmann GE, Chase DA, Barta PE, Pearlson GD (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151: 842–848PubMedGoogle Scholar
  10. 10.
    DeLisi LE, Buchsbaum MS, Holcomb HH, Langston KC, King AC, Kessler R, Pickar D, Carpenter WT, Morihisa JM, Magolin W, Weinberger DR (1989) Increased temporal lobe glucose use in chronic schizophrenic patients. Biol Psych 25:835–851CrossRefGoogle Scholar
  11. 11.
    McDonald B, Highley JR, Walker MA, Herron BM, Cooper SJ, Esiri MM, Crow TJ (2000) Anomalous asymmetry of fusiform and parahippocampal gyrus gray matter in schizophrenia: a postmortem study. Am J Psychiatry 157:40–47PubMedGoogle Scholar
  12. 12.
    Arnold SE, Hyman BT, van Hoesen GW, Damasio AR (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48:625–632PubMedCrossRefGoogle Scholar
  13. 13.
    Pakkenberg B (1990) Pronounced reduction of total number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028PubMedCrossRefGoogle Scholar
  14. 14.
    Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48: 996–1001PubMedCrossRefGoogle Scholar
  15. 15.
    Clarke B (1987) Arthur Wigan and the duality of mind. Psychol Med Monogr suppl: 11Google Scholar
  16. 16.
    Degreef G, Lantons G, Bogerts B, Ashtari M, Liebermann J (1992) Abnormalities of the septum pellucidum on MR scans in first episode schizophrenic patients. Am J Neuroradiol 13:835–840PubMedGoogle Scholar
  17. 17.
    MacPherson RI, Holgate RC, Londemann SK (1987) Midline central nervous lipomas in children. J Can Assoc Radiol 38:264–270Google Scholar
  18. 18.
    Velek M, White LE, Williams JP, Stafford RL, Marco LA (1988) Psychosis in a case of corpus callosum agenesis. Ala Med 58:27–29PubMedGoogle Scholar
  19. 19.
    Swayze VWd, Andreasen NC, Ehrhardt JC, Yuh WT, Alliger RJ, Cohen GA (1990) Developmental abnormalities of the corpus callosum in schizophrenia. Arch Neurol 47:805–808PubMedCrossRefGoogle Scholar
  20. 20.
    Lewis SW, Reveley MA, David AS, Ron MA (1988) Agenesis of the corpus callosum and schizophrenia: a case report. Psychol Med 18:341–347PubMedCrossRefGoogle Scholar
  21. 21.
    Filteau MJ, Pourcher E, Bouchard RH, Baruch P, Mathieu J, Bedard F, Simard N, Vincent P (1991) Corpus callosum agenesis and psychosis in Andermann syndrome. Arch Neurol 48: 1275–1280PubMedCrossRefGoogle Scholar
  22. 22.
    Bunney B, Potkin S, Bunney W (1995) New morphological findings in schizophrenia: a neurodevelopmental perspective. Clin Neurosci 3: 81–88PubMedGoogle Scholar
  23. 23.
    Woodruff PW, McManus IC, David AS (1995) Meta-analysis of corpus callosum size in schizophrenia. J Neurol Neurosurg Psychiatry 58:457–461PubMedCrossRefGoogle Scholar
  24. 24.
    Günther W, Petsch R, Steinberg R, Moser E, Streck P, Heller H, Kurtz G, Hippius H (1991) Brain dysfunction during motor activation and corpus callosum alterations in schizophrenia measured by cerebral blood flow and magnetic resonance imaging. Biol Psychiatry 29: 535–555PubMedCrossRefGoogle Scholar
  25. 25.
    Crow TJ (1984) A re-evaluation of the viral hypothesis: Is psychosis a result of retroviral integration at a site to the cerebral dominance gene? Br J Psychiatry 145:243–253PubMedCrossRefGoogle Scholar
  26. 26.
    Ernst K, Schröter P, Putzke HP (1991) Virusinfektion bei schizophrener Katatonie? In: Neumärker KJ (Hrsg) Grenzgebiete zwischen Psychiatrie und Neurologie. Springer, Berlin, Heidelberg, New York, S 202–209Google Scholar
  27. 27.
    Hynd GW, Hall J, Novey ES, Eliopulos D, Black K, Gonzalez JJ, Edmonds JE, Riccio M, Cohen M (1995) Dyslexia and corpus callosum morphology. Arch Neurol 52: 32–38PubMedCrossRefGoogle Scholar
  28. 28.
    Oishi M, Mochizuki Y, Shikata E (1999) Corpus callosum atrophy and cerebral blood flow in chronic alcoholics. J Neurol Sei 162: 51–55CrossRefGoogle Scholar
  29. 29.
    Höppner J, Großmann A, Kunesch E, Schläfke D (1999) Changes of transcallosally mediated inhibition in patients with schizophrenia. Clin Neurophysiol 110(Suppl 2): S14Google Scholar
  30. 30.
    Höppner J, Kunesch E, Großmann A, Tolzin CJ, Schulz M, Schläfke D, Ernst K (2001) Dysfunction of transcallosally mediated inhibition and callosal morphology in patients with schizophrenia. Acta Psychiatr Scand 104:227–235PubMedCrossRefGoogle Scholar
  31. 31.
    Pandya DN, Karol EA, Heilbronn D (1971) The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res 32:31–43PubMedCrossRefGoogle Scholar
  32. 32.
    Meyer BU, Röricht S, Einsiedel GH v, Kruggel F, Weindl A (1995) Inhibitory and excitatory interhemispheric transfer between motor cortical areas in normal subjects and patients with abnormalities of the corpus callosum. Brain 118:429–440PubMedCrossRefGoogle Scholar
  33. 33.
    Röricht S, Irlbacher K, Petrow E, Meyer BU (1997) Normwerte transkallosal und kortikospinal vermittelter Effekte einer hemisphärenselektiven magnetischen Kortexreizung beim Menschen. EEG-EMG 28: 34–38Google Scholar
  34. 34.
    Meyer BU, Röricht S, Woiciechowsky C (1998) Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol 43: 360–369PubMedCrossRefGoogle Scholar
  35. 35.
    Höppner J, Kunesch E, Buchmann J, Hess A, Grossmann A, Benecke R (1999) Demyelination and axonal degeneration of corpus callosum assessed by analysis of transcallosally mediated inhibition in patients with multiple sclerosis. Clin Neurophysiology 110: 748–756CrossRefGoogle Scholar
  36. 36.
    Boroojerdi B, Topper R, Foltys H, Meincke U (1999) Transcallosal inhibition and motor conduction studies in patients with schizophrenia using transcranial magnetic stimulation. Br J Psychiatr 175: 375–379CrossRefGoogle Scholar
  37. 37.
    George MS, Wassermann EM, Williams WA, Callahan A, Ketter TA, Basser P, Hallett M, Post RM (1995) Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. NeuroReport 6:1853–1856PubMedCrossRefGoogle Scholar
  38. 38.
    Kimbrell TA, Little JT, Dunn RT, Frye MA, Greenberg BD, Wassermann EM, Repeila JD, Danielson AL, Willis MW, Benson BE, Speer AM, Osuch E, George MS, Post RM (1999) Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol Psychiatry 46:1603–1613PubMedCrossRefGoogle Scholar
  39. 39.
    Speer A, Kimbrell T, Willis M, Benson BE, Dunn RT, Osuch EA, Wassermann EM, Post RM (1998) 20 Hz rTMS increases and 1 Hz rTMS decreases regional cerebral blood flow (RCBF) in depressed patients. Electroencephal Clin Neurophysiol 107: 97PGoogle Scholar
  40. 40.
    Cohen E, Bernardo M, Masana J, Arrufat FJ, Navarro V, Valss-Sole J, Böget T, Barrantes N, Catarineu S, Font M, Lomena FJ (1999) Repetitive transcranial magnetic stimulation in the treatment of chronic negative schizophrenia: a pilot study. J Neurol Neurosurg Psychiatry 67: 129–130PubMedCrossRefGoogle Scholar
  41. 41.
    Geller V, Grisaru N, Abarbanel JM, Lemberg T, Belmaker RH (1997) Slow magnetic stimulation of prefrontal cortex in depression and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 21:105–110PubMedCrossRefGoogle Scholar
  42. 42.
    Feinsod M, Kreinin B, Chistyak A, Klein E (1998) Preliminary evidence for beneficial effect of low-frequency, repetitive transcranial magnetic stimulation in patients with major depression and schizophrenia. Depression and Anxiety 7:65–68PubMedCrossRefGoogle Scholar
  43. 43.
    Hoffman RE, Nashaat NB, Berman RM, Roessler E, Belger A, Krystal JH, Charney DS (1999) Transcranial magnetic stimulation of left temporoparietal cortex in three patients reporting hallucinated „voices“. Biol Psychiatry 46:130–132PubMedCrossRefGoogle Scholar
  44. 44.
    Rollnik JD, Huber TJ, Mogk H, Siggelkow S, Kropp S, Dengler R, Emrich HM, Schneider U (2000) High frequency repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex in schizophrenic patients. NeuroReport 11:4013–4015PubMedCrossRefGoogle Scholar
  45. 45.
    Höppner J, Schulz M, Irmisch G, Mau R, Schläfke D, Richter J (2003) Antidepressant efficacy of two different rTMS procedures. High frequency over left versus low frequency over right prefrontal cortex compared with sham stimulation. Eur Arch Psychiatry Clin Neurosci 253: 103–109PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

There are no affiliations available

Personalised recommendations