Methods for flow Measurements

  • Peter Gatehouse
  • David Firmin


Blood flow is highly complicated, because it is influenced by numerous factors including the state of the vascular bed, myocardial function, flow pulsatility and vascular geometry and compliance. To help us understand connections between blood flow and conditions of the heart and other blood vessels, there has always been the need for methods of obtaining flow information in vivo. These techniques became available during the last century, and although generally invasive and destructive, they have provided clinicians with information on blood supply, heart function, and the localized genesis and development of cardiovascular diseases. The earlier indirect methods relied on deduction of flow from differential pressure recordings. The introduction of the electromagnetic catheter-tip velocity probe, the electromagnetic flow meter and hot-film anemometry shifted the emphasis from pressure measurements toward flow measurements. Later, pulsed Doppler flow meters offered a noninvasive method for measurement of blood flow.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH (1998) Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 39:300–308PubMedCrossRefGoogle Scholar
  2. 2.
    Bittoun J, Bourroul E, Jolivet O, Idy-Peretti I, Mousseaux E, Tardivon A, Peronneau P (1993) High-precision MR velocity mapping by 3D-Fourier phase encoding with a small number of encoding steps. Magn Reson Med 29:674–680PubMedCrossRefGoogle Scholar
  3. 3.
    Bryant DJ, Payne JA, Firmin DN, Longmore DB (1984) Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 8:588–593PubMedCrossRefGoogle Scholar
  4. 4.
    Buonocore MH (1993) Blood flow measurement using variable velocity encoding in the RR interval. Magn Reson Med 29:790–795PubMedCrossRefGoogle Scholar
  5. 5.
    Debatin JF, Leung DA, Wildermuth S, Botnar R, Felblinger J, McKinnon GC (1995) Flow quantitation with echo-planar phase-contrast velocity mapping: in vitro and in vivo evaluation. J Magn Reson Imaging 5:656–662PubMedCrossRefGoogle Scholar
  6. 6.
    Duerk JL, Simonetti OP, Hurst GP (1990) Modified gradients for motion suppression: variable echo time and variable bandwidth. Magn Res Imaging 8:141–151CrossRefGoogle Scholar
  7. 7.
    Eichenberger AC, Schwitter J, McKinnon GC, Debatin JF, von Schulthess GK (1995) Phase-contrast echo-planar MR imaging: real-time quantification of flow and velocity patterns in the thoracic vessels induced by Valsalva’s maneuver. J Magn Reson Imaging 5:648–655PubMedCrossRefGoogle Scholar
  8. 8.
    Firmin DN, Klipstein RH, Hounsfield GL, Paley MP, Longmore DB (1989) Echo-planar high-resolution flow velocity mapping. Magn Reson Med 12:316–327PubMedCrossRefGoogle Scholar
  9. 9.
    Firmin DN, Nayler GL, Kilner PJ, Longmore DB (1990) The application of phase shifts in NMR for flow measurement. Magn Reson Med 14: 230–241PubMedCrossRefGoogle Scholar
  10. 10.
    Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RSO, Longmore DB (1988) In vivo validation of magnetic resonance velocity imaging. J Comput Assist Tomogr 11:751–716CrossRefGoogle Scholar
  11. 11.
    Foo TK, Bernstein MA, Aisen AM, Hernandez RJ, Collick BD, Bernstein T (1995) Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology 195:471–478PubMedGoogle Scholar
  12. 12.
    Haacke EM, Lenz GW (1987) Improving MR image quality in the presence of motion by using rephasing gradients. Am J Roentgenol 148:1251–1258CrossRefGoogle Scholar
  13. 13.
    Hardy CJ, Bolster BD Jr, McVeigh ER, Iben IE, Zerhouni EA (1996) Pencil excitation with interleaved fourier velocity encoding: NMR measurement of aortic distensibility. Magn Reson Med 35:814–819PubMedCrossRefGoogle Scholar
  14. 14.
    Herment A, Mousseaux E, Jolivet O, DeCesare A, Frouin F, Todd-Pokropek A, Bittoun J (2000) Improved estimation of velocity and flow rate using regularized three-point phase-contrast velocimetry. Magn Reson Med 4:122–128CrossRefGoogle Scholar
  15. 15.
    Kilner PJ, Firmin DN, Rees RSO, Martinez J, Pennell DJ, Mohiaddin RH, Underwood SR, Longmore DB (1991) Valve and great vessel stenosis: assessment with MR jet velocity mapping. Radiology 178:229–235PubMedGoogle Scholar
  16. 16.
    Lee AT, Pike GB, Pelc NJ (1995) Three-point phase-contrast velocity measurements with increased velocity-to-noise ratio. Magn Reson Med 33:122–126PubMedCrossRefGoogle Scholar
  17. 17.
    Markl M, Alley MT, Pelc NJ (2003) Balanced phase-contrast steady-state free precession (PC-SSFP): a novel technique for velocity encoding by gradient inversion. Magn Reson Med 49:945–952PubMedCrossRefGoogle Scholar
  18. 18.
    Mohiaddin RH (1995) Flow patterns in the dilated ischaemic left ventricle studied by magnetic resonance imaging with velocity vector mapping. J Magn Reson Imag 5:493–498CrossRefGoogle Scholar
  19. 19.
    Mohiaddin RH, Gatehouse PD, Firmin DN (1995) Exercise-related changes in aortic flow measured with spiral echo-planar MR velocity mapping. J Magn Reson Imaging 5:159–163PubMedCrossRefGoogle Scholar
  20. 20.
    Mohiaddin RH, Gatehouse PD, Henien M, Firmin DN (1997) Cine MR Fourier velocimetry of blood flow through cardiac valves: comparison with Doppler echocardiography. J Magn Reson Imaging 7:657–663PubMedCrossRefGoogle Scholar
  21. 21.
    Mohiaddin RH, Longmore DB (1993) The functional aspects of cardiovascular magnetic resonance imaging: techniques and applications. Circulation 88:264–281PubMedCrossRefGoogle Scholar
  22. 22.
    Mohiaddin RH, Yang GZ, Kilner PJ (1994) Visualization of flow by vector analysis of multidirectional cine magnetic resonance velocity mapping. J Comput Assist Tomogr 18:383–392PubMedCrossRefGoogle Scholar
  23. 23.
    Mostbeck GH, Caputo GR, Higgins CB (1992) Magnetic resonance measurement of blood flow in the cardiovascular system. Am Journ Roentgen 159:453–461CrossRefGoogle Scholar
  24. 24.
    Nayler GL, Firmin DN, Longmore DB (1986) Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 10:715–722PubMedCrossRefGoogle Scholar
  25. 25.
    Pelc NJ, Bernstein MA, Shimakawa A, Glover GH (1991) Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imaging 1:405–413PubMedCrossRefGoogle Scholar
  26. 26.
    Pike GB, Meyer CH, Brosnan TJ, Pelc NJ (1994) Magnetic resonance velocity imaging using a fast spiral phase contrast sequence. Magn Reson Med 32:476–483PubMedCrossRefGoogle Scholar
  27. 27.
    Polzin JA, Frayne R, Grist TM, Mistretta CA (1996) Frequency response of multi-phase segmented k-space phase-contrast. Magn Reson Med 35:755–762PubMedCrossRefGoogle Scholar
  28. 28.
    Rebergen SA, van der Wall EE, Doornbos J, de Roos A (1993) Magnetic resonance measurement of velocity and flow: technique, validation and cardiovascular applications. Am Heart J 126:1439–1456PubMedCrossRefGoogle Scholar
  29. 29.
    van Dijk P (1984) Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr 8:429–436PubMedCrossRefGoogle Scholar
  30. 30.
    Walker MF, Souza SP, Dumoulin CL (1988) Quantitative flow measurement in phase contrast MR angiography. J Comput Assist Tomogr 12:304–313PubMedCrossRefGoogle Scholar
  31. 31.
    Young IR, Hall AS, Bryant DJ, Thomas DGT, Gill SS, Dubowitz LMS, Cowan F, Pennock JM, Bydder GM (1988) Assessment of brain perfusion with MR imaging. J Comput Assist Tomogr 12:721–727PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Peter Gatehouse
  • David Firmin

There are no affiliations available

Personalised recommendations