Skip to main content

Magnetic Resonance Contrast Agents

  • Chapter
Cardiovascular Magnetic Resonance
  • 152 Accesses

Abstract

Contrast agents for cardiovascular imaging are used to enhance the capability of MRI and MRA. Since the advent of the first commercially available MR contrast agent (Gd-DTPA) at the end of the 1980s, investigators have made many advances in contrast-enhanced cardiovascular imaging, most importantly in the detection and characterization of ischemic myocardial injuries and vascular stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam G, Neuerburg J, Spüntrup E, et al (1994) Gd-DTPA-cascade-polymer: potential blood pool contrast agent for MR imaging. J Magn Reson Imaging 4:462–466

    Article  PubMed  CAS  Google Scholar 

  2. Arheden H, Saeed M, Higgins CB et al (2000) Reperfused rat myocardium subjected to various durations of ischemia: estimation of the distribution volume of contrast material with echoplanar MRI. Radiology 215:520–528

    PubMed  CAS  Google Scholar 

  3. Bloch F (1946) Nuclear induction. Phys Rev 70:460–477

    Article  CAS  Google Scholar 

  4. Bloembergen N, Morgan LO (1961) Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation. J Chem Phys 34:842–850

    Article  CAS  Google Scholar 

  5. Bloembergen N (1957) Proton relaxation times in paramagnetic solutions. J Chem Phys 27:572–581

    Article  CAS  Google Scholar 

  6. Bremerich J, Roberts TP, Wendland MF, et al (2000) Three-dimensional MR imaging of pulmonary vessels and parencyma with NC 100150 Injection (Clariscan™). J Magn Reson Imaging 11:622–628

    Article  PubMed  CAS  Google Scholar 

  7. Canet E, Revel D, Forrat R, et al (1993) Super-paramagnetic iron oxide particles and positive enhancement for myocardial perfusion studies assessed by subsecond Tl-weighted MRI. Magn Reson Imaging 11:1139–145

    Article  PubMed  CAS  Google Scholar 

  8. Caravan P, Ellison J J, McMurry TJ, et al (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics and applications. Chem Rev 99:2293–2352

    Article  PubMed  CAS  Google Scholar 

  9. Choi SII, Choi SH, Kim ST, et al (2000) Irreversibly damaged myocardium at MR imaging with a necrosis tissue-specific contrast agent in a cat model. Radiology 215:863–868

    PubMed  CAS  Google Scholar 

  10. Clarke SE, Weinmann H J, Dai E, et al (2000) Comparison of two blood pool contrast agents for 0.5-T MR angiography: experimental study in rabbits. Radiology 214:787–794

    PubMed  CAS  Google Scholar 

  11. Diesbourg LD, Prato FS, Wisenberg G, et al (1992) Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease. Magn Reson Med 23:239–235

    Article  PubMed  CAS  Google Scholar 

  12. Flacke S, Fischer S, Scott MJ, et al (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285

    Article  PubMed  CAS  Google Scholar 

  13. Flacke SJ, Fischer SE, Lorenz CH (2001) Measurement of the gadopentate dimeglumine partition coefficient in human myocardium in vivo: Normal distribution and elevation in acute and chronic infarction. Radiology 218:703–710

    PubMed  CAS  Google Scholar 

  14. Fritz-Hansen T, Rostrup E, Sondergaard L, et al (1998) Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn Reson Med 40:922–929

    Article  PubMed  CAS  Google Scholar 

  15. Gerber BL, Bluemke DA, Chin BB, et al (2002) Single-vessel coronary artery stenosis: myocardial perfusion imaging with Gadomer-17 first-pass MR imaging in a swine model of comparison with gadopentate dimeglumine. Radiology 225:104–112

    Article  PubMed  Google Scholar 

  16. Geschwind JF, Saeed M, Wendland MF, et al (1998) Depiction of reperfused myocardial infarction using contrast-enhanced spin echo and gradient echo magnetic resonance imaging. Invest Radiol 33:386–392

    Article  PubMed  CAS  Google Scholar 

  17. Grist T, Korosec F, Peters D, et al (1998) Steady-state and dynamic MR angiographic imaging with MS-325: initial experience in humans. Radiology 207:539–544

    PubMed  CAS  Google Scholar 

  18. Jerosch-Herold M, Wilke N, Wang Y, et al (1999) Direct comparison of an intravascular and an extracellular contrast agents for quantification of myocardial perfusion. Int J Card Imaging 15:453–364

    Article  PubMed  CAS  Google Scholar 

  19. Johnsson L, Johnsson C, Penno E, et al (2002) Acute cardiac transplant rejection: detection and grading with MR imaging with a blood pool contrast agent — Experimental study in the rats. Radiology 225:97–103

    Article  PubMed  Google Scholar 

  20. Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 31:9–21

    Article  PubMed  CAS  Google Scholar 

  21. Klein C, Nagel E, Schnackenburg B, et al (2000) The intravascular contrast agent Clariscan™ (NC100150 injection) for 3D MR coronary angiography in patients with coronary artery disease. MAGMA 11:65–67

    PubMed  CAS  Google Scholar 

  22. Kroft LJM, Doornbos J, van der Geest RJ, et al (1999) Blood pool contrast agent CMD-A2-Gd-DOTA-enhanced MR imaging of infarcted myocardium in pigs. J Magn Reson Imaging 10:170–177

    Article  PubMed  CAS  Google Scholar 

  23. Krombach GA, Higgins CH, Chujo M, et al (2002) Blood pool enhanced MRI detects suppression of microvascular permeability in early post-infarction reperfusion after nicorandil therapy. Magn Reson Med 47:896–902

    Article  PubMed  CAS  Google Scholar 

  24. Krombach GA, Wendland MF, Higgins CH, et al (2002) MR imaging of spatial extent of microvascular injury in reperfused ischemically injured rat myocardium: value of blood pool ultrasmall superparamagnetic particles of iron oxide. Radiology 225:479–486

    Article  PubMed  Google Scholar 

  25. Lauffer RB, Parmelle DJ, Dunham SU, et al (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538

    PubMed  CAS  Google Scholar 

  26. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMRI: theory and design. Chem Rev 87:901–927

    Article  CAS  Google Scholar 

  27. Lauterbur PC, Mendonca-Dias MH, et al (1978) Augmentation of tissue water proton spin-lattice relaxation rate by in vivo addition of paramagnetic ions, In: Dutton PL, Leigh LS, Scarpa A (eds) Frontiers of Biological energetics, New York: Academic Press, pp 752–759

    Chapter  Google Scholar 

  28. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:19–23

    Article  Google Scholar 

  29. Marchai G, Ni Y, Herijgers P, et al (1996) Paramagnetic metallo-porphyrins: infarct avid contrast agents for diagnosis of acute myocardial infarction by MRI. Eur Radiol 6:2–8

    Article  Google Scholar 

  30. Nelson TR, Hendrick RE, Hendee WR (1984) Selection of pulse sequences producing maximum tissue contrast in magnetic resonance imaging. Magn Reson Imaging 2:285–294

    Article  PubMed  CAS  Google Scholar 

  31. Pislaru SV, Ni Y, Pislaru C et al (1999) Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation 99:690–696

    Article  PubMed  CAS  Google Scholar 

  32. Prince MR (1994) Gadolinium-enhanced MR aortograpyhy. Radiology 191:155–164

    PubMed  CAS  Google Scholar 

  33. Roberts HC, Saeed M, Roberts TPL, et al (1999) MRI of acute myocardial ischemia: comparing a new contrast agent, Gd-DTPA-24-cascade-polymer, with Gd-DTPA. J Magn Reson Imaging 9:204–209

    Article  PubMed  CAS  Google Scholar 

  34. Rocklage SM, Watson AD (1993) Chelates of gadolinium and dysprosium as contrast agents for MR imaging. J Magn Reson Imaging 3:167–178

    Article  PubMed  CAS  Google Scholar 

  35. Rosen BR, Belliveau JW, Vevea JM, et al (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  PubMed  CAS  Google Scholar 

  36. Ruehm SG, Corot C, Vogt P, et al (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422

    Article  PubMed  CAS  Google Scholar 

  37. Runge VM (2000) Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging 12:205–213

    Article  PubMed  CAS  Google Scholar 

  38. Saeed M, Bremerich J, Wendland MF, et al (1999) Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. Radiology 213:247–257

    PubMed  CAS  Google Scholar 

  39. Saeed M, Higgins CB, Geschwind JF, et al (2000) Tl-relaxation kinetics of extracellular, intracellular and intravascular MR contrast agents in normal and acutely reperfused infarcted myocardium using echo planar MR imaging. Eur Radiol 10:310–318

    Article  PubMed  CAS  Google Scholar 

  40. Saeed M, Lund G, Wendland MF, et al (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 103:871–876

    Article  PubMed  CAS  Google Scholar 

  41. Saeed M, Wendland MF, Engelbrecht M, et al (1998) Value of blood pool contrast agents in magnetic resonance angiography of the pelvis and lower extremities. Eur Radiol 8:1047–1053

    Article  PubMed  CAS  Google Scholar 

  42. Saeed M, Wendland MF, Lauerma K, et al (1995) Detection of myocardial ischemia using first pass contrast-enhanced inversion recovery and driven equilibrium fast GRE imaging. J Magn Reson Imaging 5:515–523

    Article  PubMed  CAS  Google Scholar 

  43. Saeed M, Wendland MF, Masui T, et al (1993) Dual mechanisms for change in myocardial signal intensity by means of a single MR contrast Magnetic resonance contrast agents medium: dependence on concentration and pulse sequence. Radiology 186:175–182

    PubMed  CAS  Google Scholar 

  44. Saeed M, Wendland MF, Yu KK, et al (1993) Dual effects of gadodiamide injection in depiction of the region of myocardial ischemia. J Magn Reson Imaging 3:21–29

    Article  PubMed  CAS  Google Scholar 

  45. Solomon I, Bloembergen N (1956) Nuclear magnetic interactions in the HF molecule. J Chem Phys 25:261–266

    Article  CAS  Google Scholar 

  46. Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559–565

    Article  CAS  Google Scholar 

  47. Stillman AE, Wilke N, Li D, et al (1996) Ultra-small super paramagnetic iron oxide to enhance MRA of the renal and coronary arteries: studies in human patients. J Comput Assist Tomogr 20: 51–55

    Article  PubMed  CAS  Google Scholar 

  48. Taylor AM, Panting JR, Keegan J, et al (1999) Safety and preliminary findings with the intravascular contrast agent NC 100150 Injection for MR coronary angiography. J Magn Reson Imaging 9:220–227

    Article  PubMed  CAS  Google Scholar 

  49. van Beers BE, Gallez B, Pringot J (1996) Contrast-enhanced MRI of the liver. Radiology 203: 297–302

    Google Scholar 

  50. Vexier VS, Clement O, Schmitt-Willich H, et al (1994) Effect of varying the molecular weight of the MR contrast agent GdDTPA-polylysine on blood pharmacokinetic and enhancement patterns. J Magn Reson Imaging 4:381–388

    Article  Google Scholar 

  51. Wang SC, Wikstrom MG, White DL, et al (1990) Evaluation of Gd-DTPA-labeled dextran as an intravascular MR contrast agent: imaging characteristics in normal rat tissues. Radiology 175:483–488

    PubMed  CAS  Google Scholar 

  52. Wehrli FW, MacFall JR, Glover GH, et al (1984) The dependence of nuclear magnetic resonance (NMR) imaging contrast on intrinsic and pulse sequence timing parameters. Magn Reson Imaging 2:3–16

    Article  PubMed  CAS  Google Scholar 

  53. Weinmann HJ, Brasch RC, Press WR, et al (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142:619–624

    Article  CAS  Google Scholar 

  54. Weissleder R, Lee A, Khaw B, et al (1992) Detection of myocardial infarction with MION-antimyosin. Radiology 182:381–385

    PubMed  CAS  Google Scholar 

  55. Wendland MF, Saeed M, Lauerma K et al (1997) Alterations in Tl of normal and reperfused infarcted myocardium after Gd-BOPTA versus Gd-DTPA on inversion recovery EPI. Magn Reson Med 37:448–456

    Article  PubMed  CAS  Google Scholar 

  56. Wendland MF, Saeed M, Lund G, et al (1999) Contrast-enhanced MRI for qualification of myocardial viability. J Magn Reson Imaging 10: 694–702

    Article  PubMed  CAS  Google Scholar 

  57. Wiener EC, Brechbiel MW, Brothers H, et al (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31:1–8

    Article  PubMed  CAS  Google Scholar 

  58. Wolff SD (2002) Results of diagnostic trials of magnetic resonance angiography with MS-325, a blood pool contrast agent, for detection of peripheral vascular disease in the aortoiliac region. Am J Cardiol Sept 24 (131H)

    Google Scholar 

  59. Wood ML, Hardy PA (1993) Proton-relaxation enhancement. J Magn Reson Imaging 3:149–156

    Article  PubMed  CAS  Google Scholar 

  60. Yu KK, Saeed M, Wendland MF, et al (1992) Real-time dynamics of an extravascular magnetic resonance contrast medium in acutely infarcted myocardium using inversion recovery and gradient-recalled echo-planar imaging. Invest Radiol 27:927–934

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saeed, M. (2004). Magnetic Resonance Contrast Agents. In: Nagel, E., van Rossum, A.C., Fleck, E. (eds) Cardiovascular Magnetic Resonance. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-7985-1932-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7985-1932-9_3

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-62152-9

  • Online ISBN: 978-3-7985-1932-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics