Left ventricular myocardial tagging

  • Frank E. Rademakers


Since cardiac disease is the main cause of mortality in Western societies, the heart and its coronary supply have been extensively studied over the past centuries. While more recently, the focus has been mainly on coronary morphology and function (and interventional techniques), and on molecular biology and genetics, the anatomy, morphology and function of the myocardium have been comprehensively studied in the past using invasive and non-invasive methods, both in humans and in experimental settings. Nevertheless, the heart still holds many secrets and unknowns, which await further investigation. More specifically, the intricate myocardial fiber structure and its implications on performance and function still are incompletely understood. New non-invasive techniques, involving echo-Doppler (tissue Doppler imaging (TDI)) and magnetic resonance imaging (MRI) (myocardial tagging) have made it possible to study regional myocardial and even fiber function in vivo and to increase our understanding of the subject.


Public Health Magnetic Resonance Imaging Molecular Biology Experimental Setting Cardiac Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aelen FW, Arts T, Sanders DG et al. (1997) Relation between torsion and cross-sectional area change in the human left ventricle. J Biomech 30:207–212PubMedCrossRefGoogle Scholar
  2. 2.
    Aletras AH, Balaban RS, Wen H (1999) Highresolution strain analysis of the human heart with fast-DENSE. J Magn Reson 140:41–57PubMedCrossRefGoogle Scholar
  3. 3.
    Aletras AH, Ding S, Balaban RS et al. (1999) DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 137:247–252PubMedCrossRefGoogle Scholar
  4. 4.
    Arai AE, Gaither CC, III, Epstein FH et al. (1999) Myocardial velocity gradient imaging by phase contrast MRI with application to regional function in myocardial ischemia. Magn Reson Med 42:98–109PubMedCrossRefGoogle Scholar
  5. 5.
    Axel L, Dougherty L (1989) Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 172:349–350PubMedGoogle Scholar
  6. 6.
    Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171:841–845PubMedGoogle Scholar
  7. 7.
    Axel L, Goncalves RC, Bloomgarden D (1992) Regional heart wall motion: two-dimensional analysis and functional imaging with MR imaging. Radiology 183:745–750PubMedGoogle Scholar
  8. 8.
    Azhari H, Weiss JL, Rogers WJ et al. (1993) Noninvasive quantification of principal strains in normal canine hearts using tagged MRI images in 3-D. Am J Physiol 264:H205–H216PubMedGoogle Scholar
  9. 9.
    Bax JJ, Molhoek SG, van Erven L et al. (2003) Usefulness of myocardial tissue Doppler echocardiography to evaluate left ventricular dys synchrony before and after biventricular pacing in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 91:94–97PubMedCrossRefGoogle Scholar
  10. 10.
    Bazille A, Guttman MA, McVeigh ER et al. (1994) Impact of semiautomated versus manual image segmentation errors on myocardial strain calculation by magnetic resonance tagging. Invest Radiol 29:427–433PubMedCrossRefGoogle Scholar
  11. 11.
    Beache GM, Wedeen VJ, Weisskopf RM et al. (1995) Intramural mechanics in hypertrophic cardiomyopathy: functional mapping with strain-rate MR imaging. Radiology 197:117–124PubMedGoogle Scholar
  12. 12.
    Bergey PD, Axel L (2000) Focal hypertrophic cardiomyopathy simulating a mass: MR tagging for correct diagnosis. Am J Roentgenol 174:242–244CrossRefGoogle Scholar
  13. 13.
    Bogaert J, Bosmans H, Maes A et al. (2000) Remote myocardial dysfunction after acute anterior myocardial infarction: impact of left ventricular shape on regional function: a magnetic resonance myocardial tagging study. J Am Coll Cardiol 35:1525–1534PubMedCrossRefGoogle Scholar
  14. 14.
    Bogaert J, Maes A, Van de WF et al. (1999) Functional recovery of subepicardial myocardial tissue in transmural myocardial infarction after successful reperfusion: an important contribution to the improvement of regional and global left ventricular function. Circulation 99:36–43PubMedCrossRefGoogle Scholar
  15. 15.
    Bogaert J, Rademakers FE (2001) Regional nonuniformity of normal adult human left ventricle. Am J Physiol Heart Circ Physiol 280:H610–H620PubMedGoogle Scholar
  16. 16.
    Bosmans H, Bogaert J, Rademakers F et al. (1996) Left ventricular radial tagging acquisition using gradient-recalled-echo techniques: sequence optimization. MAGMA 4:123–133PubMedCrossRefGoogle Scholar
  17. 17.
    Buchalter MB, Rademakers FE, Weiss JL et al. (1994) Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res 28:629–635PubMedCrossRefGoogle Scholar
  18. 18.
    Buchalter MB, Weiss JL, Rogers WJ et al. (1990) Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation 81:1236–1244PubMedCrossRefGoogle Scholar
  19. 19.
    Bundy JM, Lorenz CH (1997) TAGASIST: a post-processing and analysis tools package for tagged magnetic resonance imaging. Comput Med Imaging Graph 21:225–232PubMedCrossRefGoogle Scholar
  20. 20.
    Clarysse P, Basset C, Khouas L et al. (2000) Two-dimensional spatial and temporal displacement and deformation field fitting from cardiac magnetic resonance tagging. Med Image Anal 4:253–268PubMedCrossRefGoogle Scholar
  21. 21.
    Clarysse P, Han M, Croisille P et al. (2002) Exploratory analysis of the spatio-temporal deformation of the myocardium during systole from tagged MRI. IEEE Trans Biomed Eng 49:1328–1339PubMedCrossRefGoogle Scholar
  22. 22.
    Constable RT, Rath KM, Sinusas AJ et al. (1994) Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magn Reson Med 32:33–42PubMedCrossRefGoogle Scholar
  23. 23.
    Croisille P (2000) Myocardial viability assessed with tagged MRI. MAGMA 11:47–48PubMedGoogle Scholar
  24. 24.
    Derumeaux G, Loufoua J, Pontier G et al. (2001) Tissue Doppler imaging differentiates transmural from nontransmural acute myocardial infarction after reperfusion therapy. Circulation 103:589–596PubMedCrossRefGoogle Scholar
  25. 25.
    Derumeaux G, Mulder P, Richard V et al. (2002) Tissue Doppler imaging differentiates physiological from pathological près sure-overload left ventricular hypertrophy in rats. Circulation 105: 1602–1608PubMedCrossRefGoogle Scholar
  26. 26.
    Dong S J, Hees PS, Huang WM et al. (1999) Independent effects of preload, afterload, and contractility on left ventricular torsion. Am J Physiol 277:H1053–H1060PubMedGoogle Scholar
  27. 27.
    Dong S J, Hees PS, Siu CO et al. (2001) MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am J Physiol Heart Circ Physiol 281:H2002–H2009PubMedGoogle Scholar
  28. 28.
    Dong SJ, MacGregor JH, Crawley AP et al. (1994) Left ventricular wall thickness and regional systolic function in patients with hypertrophic cardiomyopathy. A three-dimensional tagged magnetic resonance imaging study. Circulation 90:1200–1209PubMedCrossRefGoogle Scholar
  29. 29.
    Donofrio MT, Clark BJ, Ramaciotti C et al. (1999) Regional wall motion and strain of transplanted hearts in pediatric patients using magnetic resonance tagging. Am J Physiol 277: R1481–R1487PubMedGoogle Scholar
  30. 30.
    Dou J, Reese TG, Tseng WY et al. (2002) Cardiac diffusion MRI without motion effects. Magn Reson Med 48:105–114PubMedCrossRefGoogle Scholar
  31. 31.
    Duncan AM, Francis DP, Gibson DG et al. (2003) Differentiation of ischemic from nonischemic cardiomyopathy during dobutamine stress by left ventricular long-axis function: additional effect of left bundle-branch block. Circulation 108:1214–1220PubMedCrossRefGoogle Scholar
  32. 32.
    Edvardsen T, Gerber BL, Garot J et al. (2002) Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 106:50–56PubMedCrossRefGoogle Scholar
  33. 33.
    Edvardsen T, Urheim S, Skulstad H et al. (2002) Quantification of left ventricular systolic function by tissue Doppler echocardiography: added value of measuring pre-and postejection velocities in ischemic myocardium. Circulation 105: 2071–2077PubMedCrossRefGoogle Scholar
  34. 34.
    Epstein FH, Yang Z, Gilson WD et al. (2002) MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions. Magn Reson Med 48:399–403PubMedCrossRefGoogle Scholar
  35. 35.
    Fischer SE, McKinnon GC, Maier SE et al. (1993) Improved myocardial tagging contrast. Magn Reson Med 30:191–200PubMedCrossRefGoogle Scholar
  36. 36.
    Fogel MA, Gupta KB, Weinberg PM et al. (1995) Regional wall motion and strain analysis across stages of Fontan reconstruction by magnetic resonance tagging. Am J Physiol 269:H1132–H1152PubMedGoogle Scholar
  37. 37.
    Fogel MA, Weinberg PM, Fellows KE et al. (1995) A study in ventricular-ventricular interaction. Single right ventricles compared with systemic right ventricles in a dual-chamber circulation. Circulation 92:219–230PubMedCrossRefGoogle Scholar
  38. 38.
    Fogel MA, Weinberg PM, Gupta KB et al. (1998) Mechanics of the single left ventricle: a study in ventricular-ventricular interaction II. Circulation 98:330–338PubMedCrossRefGoogle Scholar
  39. 39.
    Garot J, Bluemke DA, Osman NF et al. (2000) Fast determination of regional myocardial strain fields from tagged cardiac images using harmonic phase MRI. Circulation 101:981–988PubMedCrossRefGoogle Scholar
  40. 40.
    Garot J, Bluemke DA, Osman NF et al. (2000) Transmural contractile reserve after reperfused myocardial infarction in dogs. J Am Coll Cardiol 36:2339–2346PubMedCrossRefGoogle Scholar
  41. 41.
    Garot J, Pascal O, Diebold B et al. (2002) Alterations of systolic left ventricular twist after acute myocardial infarction. Am J Physiol Heart Circ Physiol 282:H357–H362PubMedGoogle Scholar
  42. 42.
    Gerber BL, Garot J, Bluemke DA et al. (2002) Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 106: 1083–1089PubMedCrossRefGoogle Scholar
  43. 43.
    Gerber BL, Rochitte CE, Melin JA et al. (2000) Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 101:2734–2741PubMedCrossRefGoogle Scholar
  44. 44.
    Gotte MJ, van Rossum AC, Marcus JT et al. (1999) Recognition of infarct localization by specific changes in intramural myocardial mechanics. Am Heart J 138:1038–1045PubMedCrossRefGoogle Scholar
  45. 45.
    Gotte MJ, van Rossum AC, Twisk JWR et al. (2001) Quantification of regional contractile function after infarction: strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J Am Coll Cardiol 37:808–817PubMedCrossRefGoogle Scholar
  46. 46.
    Haber I, Metaxas DN, Axel L (2000) Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI. Med Image Anal 4:335–355PubMedCrossRefGoogle Scholar
  47. 47.
    Hasuda T, Satoh T, Yamada N et al. (1999) A case of constrictive pericarditis with local thickening of the pericardium without manifest ventricular interdependence. Cardiology 92:214–216PubMedCrossRefGoogle Scholar
  48. 48.
    Henson RE, Song SK, Pastorek JS et al. (2000) Left ventricular torsion is equal in mice and humans. Am J Physiol Heart Circ Physiol 278: H1117–H1123PubMedGoogle Scholar
  49. 49.
    Hoffmann R, Altiok E, Nowak B et al. (2002) Strain rate measurement by doppler echocardiography allows improved assessment of myocardial viability in patients with depressed left ventricular function. J Am Coll Cardiol 39:443–449PubMedCrossRefGoogle Scholar
  50. 50.
    Ikonomidou VN, Sergiadis GD (2002) A rotational approach to localized SPAMM 1-1 tagging. J Magn Reson 157:218–222PubMedCrossRefGoogle Scholar
  51. 51.
    Kato T, Nöda A, Izawa H et al. (2003) Myocardial velocity gradient as a noninvasively determined index of left ventricular diastolic dysfunction in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 42:278–285PubMedCrossRefGoogle Scholar
  52. 52.
    Klein SS, Graham TP Jr, Lorenz CH (1998) Noninvasive delineation of normal right ventricular contractile motion with magnetic resonance imaging myocardial tagging. Ann Biomed Eng 26:756–763PubMedCrossRefGoogle Scholar
  53. 53.
    Knollmann FD, Maurer J, Wlodarczyk W et al. (1996) Fourier phase mapping of the human heart. The use of spatial modulation of magnetization cine magnetic resonance imaging. Invest Radiol 31:743–748PubMedCrossRefGoogle Scholar
  54. 54.
    Kojima S, Yamada N, Goto Y (1999) Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging. N Engl J Med 341: 373–374PubMedCrossRefGoogle Scholar
  55. 55.
    Koyama J, Ray-Sequin PA, Falk RH (2003) Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation 107: 2446–2452PubMedCrossRefGoogle Scholar
  56. 56.
    Kramer CM, Ferrari VA, Rogers WJ et al. (1996) Angiotensin-Converting enzyme inhibition limits dysfunction in adjacent noninfarcted regions during left ventricular remodeling. J Am Coll Cardiol 27:211–217PubMedCrossRefGoogle Scholar
  57. 57.
    Kramer CM, Lima JA, Reichek N et al. (1993) Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 88:1279–1288PubMedCrossRefGoogle Scholar
  58. 58.
    Kramer CM, Magovern JA, Rogers WJ et al. (2002) Reverse remodeling and improved regional function after repair of left ventricular aneurysm. J Thorac Cardiovasc Surg 123:700–706PubMedCrossRefGoogle Scholar
  59. 59.
    Kramer CM, Rogers WJ, Theobald TM et al. (1997) Dissociation between changes in intramyocardial function and left ventricular volumes in the eight weeks after first anterior myocardial infarction. J Am Coll Cardiol 30: 1625–1632PubMedCrossRefGoogle Scholar
  60. 60.
    Kramer CM, Rogers WJ, Theobald TM et al. (1996) Remote noninfarcted region dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study. Circulation 94:660–666PubMedCrossRefGoogle Scholar
  61. 61.
    Kuijer JP, Marcus JT, Gotte MJ et al. (2002) Three-dimensional myocardial strains at endsystole and during diastole in the left ventricle of normal humans. J Cardiovasc Magn Reson 4: 341–351PubMedCrossRefGoogle Scholar
  62. 62.
    Leclercq C, Faris O, Tunin R et al. (2002) Systolic improvement and mechanical synchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation 106:1760–1763PubMedCrossRefGoogle Scholar
  63. 63.
    Lima JA, Ferrari VA, Reichek N et al. (1995) Segmental motion and deformation of transmurally infarcted myocardium in acute post infarct period. Am J Physiol 268:H1304–H1312PubMedGoogle Scholar
  64. 64.
    Lima JA, Jeremy R, Guier W et al. (1993) Accurate systolic wall thickening by nuclear magnetic resonance imaging with tissue tagging: correlation with sonomicrometers in normal and ischemic myocardium. J Am Coll Cardiol 21:1741–1751PubMedCrossRefGoogle Scholar
  65. 65.
    Lingamneni A, Hardy PA, Powell KA et al. (1995) Validation of cine phase-contrast MR imaging for motion analysis. J Magn Reson Imaging 5:331–338PubMedCrossRefGoogle Scholar
  66. 66.
    Lorenz CH, Pastorek JS, Bundy JM (2000) Delineation of normal human left ventricular twist throughout systole by tagged cine magnetic resonance imaging. J Cardiovasc Magn Reson 2: 97–108PubMedCrossRefGoogle Scholar
  67. 67.
    MacGowan GA, Shapiro EP, Azhari H et al. (1997) Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy. Circulation 96:535–541PubMedCrossRefGoogle Scholar
  68. 68.
    Mankad S, d’Amato TA, Reichek N et al. (2001) Combined angiotensin II receptor antagonism and angiotensin-converting enzyme inhibition further attenuates postinfarction left ventricular remodeling. Circulation 103:2845–2850PubMedCrossRefGoogle Scholar
  69. 69.
    Marcus JT, Gotte MJ, van Rossum AC et al. (1997) Myocardial function in infarcted and remote regions early after infarction in man: assessment by magnetic resonance tagging and strain analysis. Magn Reson Med 38:803–810PubMedCrossRefGoogle Scholar
  70. 70.
    Markl M, Schneider B, Hennig J (2002) Fast phase contrast cardiac magnetic resonance imaging: improved assessment and analysis of left ventricular wall motion. J Magn Reson Imaging 15:642–653PubMedCrossRefGoogle Scholar
  71. 71.
    McVeigh ER, Bolster BD Jr (1998) Improved sampling of myocardial motion with variable separation tagging. Magn Reson Med 39:657–661PubMedCrossRefGoogle Scholar
  72. 72.
    Moore CC, Lugo-Olivieri CH, McVeigh ER et al. (2000) Three-dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged MR imaging. Radiology 214:453–466PubMedGoogle Scholar
  73. 73.
    Moore CC, McVeigh ER, Zerhouni EA (1999) Noninvasive measurement of three-dimensional myocardial deformation with tagged magnetic resonance imaging during graded local ischemia. J Cardiovasc Magn Reson 1:207–222PubMedCrossRefGoogle Scholar
  74. 74.
    Moulton MJ, Creswell LL, Actis RL et al. (1995) An inverse approach to determining myocardial material properties. J Biomech 28:935–948PubMedCrossRefGoogle Scholar
  75. 75.
    Myers J, Wagner D, Schertler T et al. (2002) Effects of exercise training on left ventricular volumes and function in patients with nonischemic cardiomyopathy: application of magnetic resonance myocardial tagging. Am Heart J 144: 719–725PubMedGoogle Scholar
  76. 76.
    Nagel E, Stuber M, Burkhard B et al. (2000) Cardiac rotation and relaxation in patients with aortic valve stenosis. Eur Heart J 21:582–589PubMedCrossRefGoogle Scholar
  77. 77.
    Nagel E, Stuber M, Lakatos M et al. (2000) Cardiac rotation and relaxation after anterolateral myocardial infarction. Coron Artery Dis 11:261–267PubMedCrossRefGoogle Scholar
  78. 78.
    Nagueh SF, McFalls J, Meyer D et al. (2003) Tissue Doppler imaging predicts the development of hypertrophic cardiomyopathy in subjects with subclinical disease. Circulation 108:395–398PubMedCrossRefGoogle Scholar
  79. 79.
    Nelson GS, Curry CW, Wyman BT et al. (2000) Predictors of systolic augmentation from left ventricular preexcitation in patients with dilated cardiomyopathy and intraventricular conduction delay. Circulation 101:2703–2709PubMedCrossRefGoogle Scholar
  80. 80.
    O’Dell WG, Moore CC, Hunter WC et al. (1995) Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology 195:829–835PubMedGoogle Scholar
  81. 81.
    Osman NF, McVeigh ER, Prince JL (2000) Imaging heart motion using harmonic phase MRI. IEEE Trans Med Imaging 19:186–202PubMedCrossRefGoogle Scholar
  82. 82.
    Osman NF, Sampath S, Atalar E et al. (2001) Imaging longitudinal cardiac strain on shortaxis images using strain-encoded MRI. Magn Reson Med 46:324–334PubMedCrossRefGoogle Scholar
  83. 83.
    Paelinck BP, Lamb HJ, Bax JJ et al. (2002) Assessment of diastolic function by cardiovascular magnetic resonance. Am Heart J 144:198–205PubMedCrossRefGoogle Scholar
  84. 84.
    Park J, Metaxas DN, Axel L et al. (1999) Cascaded MRI-SPAMM for LV motion analysis during a whole cardiac cycle. Int J Med Inf 55:117–126CrossRefGoogle Scholar
  85. 85.
    Park TH, Lakkis NM, Middleton KJ et al. (2002) Acute effect of nonsurgical septal reduction therapy on regional left ventricular asynchrony in patients with hypertrophic obstructive cardiomyopathy. Circulation 106:412–415PubMedCrossRefGoogle Scholar
  86. 86.
    Pelc NJ, Drangova M, Pelc LR et al. (1995) Tracking of cyclic motion with phase-contrast cine MR velocity data. J Magn Reson Imaging 5:339–345PubMedCrossRefGoogle Scholar
  87. 87.
    Perman WH, Creswell LL, Wyers SG et al. (1995) Hybrid DANTE and phase-contrast imaging technique for measurement of three-dimensional myocardial wall motion. J Magn Reson Imaging 5:101–106PubMedCrossRefGoogle Scholar
  88. 88.
    Peters DC, Ennis DB, McVeigh ER (2002) Highresolution MRI of cardiac function with projection reconstruction and steady-state free precession. Magn Reson Med 48:82–88PubMedCrossRefGoogle Scholar
  89. 89.
    Petrank YF, Dong SJ, Tyberg J et al. (1999) Regional differences in shape and load in normal and diseased hearts studied by three dimensional tagged magnetic resonance imaging. Int J Card Imaging 15:309–321PubMedCrossRefGoogle Scholar
  90. 90.
    Pieroni M, Chimenti C, Ricci R et al. (2003) Early detection of Fabry cardiomyopathy by tissue Doppler imaging. Circulation 107:1978–1984PubMedCrossRefGoogle Scholar
  91. 91.
    Prinzen FW, Hunter WC, Wyman BT et al. (1999) Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol 33:1735–1742PubMedCrossRefGoogle Scholar
  92. 92.
    Rademakers FE, Buchalter MB, Rogers WJ et al. (1992) Dissociation between left ventricular untwisting and filling. Accentuation by catecholamines. Circulation 85:1572–1581PubMedCrossRefGoogle Scholar
  93. 93.
    Rademakers FE, Rogers WJ, Guier WH et al. (1994) Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation 89:1174–1182PubMedCrossRefGoogle Scholar
  94. 94.
    Reese TG, Feinberg DA, Dou J et al. (2002) Phase contrast MRI of myocardial 3D strain by encoding contiguous slices in a single shot. Magn Reson Med 47:665–676PubMedCrossRefGoogle Scholar
  95. 95.
    Reese TG, Weisskopf RM, Smith RN et al. (1995) Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med 34:786–791PubMedCrossRefGoogle Scholar
  96. 96.
    Ryf S, Spiegel MA, Gerber M et al. (2002) Myocardial tagging with 3D-CSPAMM. J Magn Reson Imaging 16:320–325PubMedCrossRefGoogle Scholar
  97. 97.
    Saito I, Watanabe S, Masuda Y (2000) Detection of viable myocardium by dobutamine stress tagging magnetic resonance imaging with three-dimensional analysis by automatic trace method. Jpn Circ J 64:487–494PubMedCrossRefGoogle Scholar
  98. 98.
    Sandstede JJ, Johnson T, Harre K et al. (2002) Cardiac systolic rotation and contraction before and after valve replacement for aortic stenosis: a myocardial tagging study using MR imaging. Am J Roentgenol 178:953–958CrossRefGoogle Scholar
  99. 99.
    Scott CH, Sutton MS, Gusani N et al. (1999) Effect of dobutamine on regional left ventricular function measured by tagged magnetic resonance imaging in normal subjects. Am J Cardiol 83:412–417PubMedCrossRefGoogle Scholar
  100. 100.
    Selskog P, Heiberg E, Ebbers T et al. (2002) Kinematics of the heart: strain-rate imaging from time-resolved three-dimensional phase contrast MRI. IEEE Trans Med Imaging 21: 1105–1109PubMedCrossRefGoogle Scholar
  101. 101.
    Sogaard P, Egeblad H, Kim WY et al. (2002) Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. J Am Coll Cardiol 40: 723–730PubMedCrossRefGoogle Scholar
  102. 102.
    Streif JU, Herold V, Szimtenings M et al. (2003) In vivo time-resolved quantitative motion mapping of the murine myocardium with phase contrast MRI. Magn Reson Med 49:315–321PubMedCrossRefGoogle Scholar
  103. 103.
    Stuber M, Fischer SE, Scheidegger MB et al. (1999) Toward high-resolution myocardial tagging. Magn Reson Med 41:639–643PubMedCrossRefGoogle Scholar
  104. 104.
    Stuber M, Scheidegger MB, Fischer SE et al. (1999) Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation 100:361–368PubMedCrossRefGoogle Scholar
  105. 105.
    Stuber M, Spiegel MA, Fischer SE et al. (1999) Single breath-hold slice-following CSPAMM myocardial tagging. MAGMA 9:85–91PubMedGoogle Scholar
  106. 106.
    Sutherland GR, Kukulski T, Voight JU et al. (1999) Tissue Doppler echocardiography: future developments. Echocardiography 16:509–520PubMedCrossRefGoogle Scholar
  107. 107.
    Tibayan FA, Lai DT, Timek TA et al. (2002) Alterations in left ventricular torsion in tachycardia-induced dilated cardiomyopathy. J Thorac Cardiovasc Surg 124:43–49PubMedCrossRefGoogle Scholar
  108. 108.
    Tsekos NV, Garwood M, Merkle H et al. (1995) Myocardial tagging with Bl in sensitive adiabatic DANTE inversion sequences. Magn Reson Med 34:395–401PubMedCrossRefGoogle Scholar
  109. 109.
    Tsekos NV, Garwood M, Ugurbil K (2002) Tagging of the magnetization with the transition zones of 360 degrees rotations generated by a tandem of two adiabatic DANTE inversion sequences. J Magn Reson 156:187–194PubMedCrossRefGoogle Scholar
  110. 110.
    Tseng WY, Reese TG, Weisskopf RM et al. (2000) Myocardial fiber shortening in humans: initial results of MR imaging. Radiology 216: 128–139PubMedGoogle Scholar
  111. 111.
    Van der TA, Barenbrug P, Snoep G et al. (2002) Transmural gradients of cardiac myofiber shortening in aortic valve stenosis patients using MRI tagging. Am J Physiol Heart Circ Physiol 283:H1609–H1615Google Scholar
  112. 112.
    Voigt JU, Exner B, Schmiedehausen K et al. (2003) Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 107:2120–2126PubMedCrossRefGoogle Scholar
  113. 113.
    Wang M, Yip GW, Wang AY et al. (2003) Peak early diastolic mitral annulus velocity by tissue Doppler imaging adds independent and incremental prognostic value. J Am Coll Cardiol 41:820–826PubMedCrossRefGoogle Scholar
  114. 114.
    Weidemann F, Dommke C, Bijnens B et al. (2003) Defining the transmurality of a chronic myocardial infarction by ultrasonic strain-rate imaging: implications for identifying intramural viability: an experimental study. Circulation 107:883–888PubMedCrossRefGoogle Scholar
  115. 115.
    Wu EX, Towe CW, Tang H (2002) MRI cardiac tagging using a sinc-modulated RF pulse train. Magn Reson Med 48:389–393PubMedCrossRefGoogle Scholar
  116. 116.
    Yeon SB, Reichek N, Tallant BA et al. (2001) Validation of in vivo myocardial strain measurement by magnetic resonance tagging with sonomicrometry. J Am Coll Cardiol 38:555–561PubMedCrossRefGoogle Scholar
  117. 117.
    Young AA, Axel L, Dougherty L et al. (1993) Validation of tagging with MR imaging to estimate material deformation. Radiology 188: 101–108PubMedGoogle Scholar
  118. 118.
    Young AA, Dokos S, Powell KA et al. (2001) Regional heterogeneity of function in nonischemic dilated cardiomyopathy. Cardiovasc Res 49:308–318PubMedCrossRefGoogle Scholar
  119. 119.
    Young AA, Fayad ZA, Axel L (1996) Right ventricular midwall surface motion and deformation using magnetic resonance tagging. Am J Physiol 271:H2677–H2688PubMedGoogle Scholar
  120. 120.
    Young AA, Imai H, Chang CN et al. (1994) Two-dimensional left ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization. Circulation 89:740–752PubMedCrossRefGoogle Scholar
  121. 121.
    Zerhouni EA, Parish DM, Rogers WJ et al. (1988) Human heart: tagging with MR imaging-a method for noninvasive assessment of myocardial motion. Radiology 169:59–63PubMedGoogle Scholar
  122. 122.
    Zhu Y, Pelc NJ (1999) A spatiotemporal model of cyclic kinematics and its application to analyzing nonrigid motion with MR velocity images. IEEE Trans Med Imaging 18:557–569PubMedCrossRefGoogle Scholar
  123. 123.
    Zwanenburg JJ, Kuijer JP, Marcus JT et al. (2003) Zwanenburg JJM, Joost PA, Kuijer J, Marcus T, Heethaar RM (2003) Steady-state free precession with myocardial tagging: CSPAMM in a single breathhold, Magn Reson Med 49(4):722–730. Erratum in: Magn Reson Med 50:228PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Frank E. Rademakers

There are no affiliations available

Personalised recommendations