Skip to main content

Belastungsuntersuchungen: Praktische Durchführung und Interpretation

  • Chapter
Sportkardiologie
  • 2585 Accesses

Auszug

Jede Bewertung der Leistungsfähigkeit und Belastbarkeit setzt neben der Kenntnis unterschiedlicher klinischer Befunde und Messwerte eine Belastungsuntersuchung voraus. Diese erfolgt in der Regel mit simultaner EKGRegistrierung (sog. Belastungs-EKG) und Blutdruckmessung als laborgestützte Fahrrad- oder Laufbandergometrie. Auf der Basis von Belastungsuntersuchungen kann eine Einschätzung der körperlichen Leistungsfähigkeit vorgenommen werden, die sich aus der Analyse der ergometrischen Messdaten ergibt. Die Leistungsfähigkeit kann durchaus abweichen von der Belastbarkeit, definiert als (sichere) Belastungsintensität, die frei von Symptomen oder anderen verdächtigen klinischen Zeichen bleibt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ahmaidi S, Hardy JM, Varray A, Collomp K, Mercier J, Préfaut C (1993) Respiratory gas exchange indices used to detect the blood lactate accumulation threshold during an incremental exercise test in young athletes. Eur J Appl Physiol 66:31–36

    Article  CAS  Google Scholar 

  2. Anderson G, Rhodes EC (1991) The relationship between blood lactate and excess CO2 in elite cyclists. J Sports Sci 9:173–181

    PubMed  CAS  Google Scholar 

  3. Aunola S, Rusko H (1984) Reproducibility of aerobic and anaerobic thresholds in 20–50 year old men. Eur J Appl Physiol 53:260–266

    Article  CAS  Google Scholar 

  4. Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    PubMed  CAS  Google Scholar 

  5. Belardinelli R, Scocco V, Mazzanti M, Purcaro A (1992) [Effects of aerobic training in patients with moderate chronic heart failure]. G Ital Cardiol 22:919–930

    PubMed  CAS  Google Scholar 

  6. Bergh U, Sjodin B, Forsberg A, Svedenhag J (1991) The relationship between body mass and oxygen uptake during running in humans. Med Sci Sports Exerc 23:205–211

    PubMed  CAS  Google Scholar 

  7. Bevegard S, Holmgren A, Jonsson B (1963) Circulatory studies in well trained athletes at rest and during heavy exercise, with special reference to stroke volume and the influence of body position. Acta Physiol Scand 57:26–50

    PubMed  CAS  Google Scholar 

  8. Borg G, Noble B (1974) Perceived exertion. Exerc Sports Sci Rev 2:131–153

    CAS  Google Scholar 

  9. Bruce RA (1971) Exercise testing of patients with coronary heart disease. Principles and normal standards for evaluation. Ann Clin Res 3:323–332

    PubMed  CAS  Google Scholar 

  10. Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ (1983) Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 55:1558–1564

    PubMed  CAS  Google Scholar 

  11. Bunc V, Heller J, Leso J (1988) Kinetics of heart rate responses to exercise. J Sports Sci 6:39–48

    PubMed  CAS  Google Scholar 

  12. Cheng B, Kuipers H, Snyder AC, Keizer HA, Jeukendrup A, Hesselink M (1992) A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med 13:518–522

    Article  PubMed  CAS  Google Scholar 

  13. Coen B (1997) Individuelle anaerobe Schwelle — Methodik und Anwendung in der sportmedizinischen Leistungsdiagnostik und Trainingssteuerung leichtathletischer Laufdisziplinen. Sport und Buch, Strauss, Köln

    Google Scholar 

  14. Coen B, Schwarz L, Urhausen A, Kindermann W (1991) Control of training in middle-and long-distance running by means of the individual anaerobic threshold. Int J Sports Med 12:519–524

    PubMed  CAS  Google Scholar 

  15. Coen B, Urhausen A, Kindermann W (1988) Value of the Conconi test for determination of the anaerobic threshold. Int J Sports Med 9:372

    Google Scholar 

  16. Conconi F, Ferrari M, Ziglio P, Droghetti P, Codeca L (1982) Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 52:869–873

    PubMed  CAS  Google Scholar 

  17. Conconi F, Grazzi G, Casoni I, Guglielmini C, Borsetto C, Ballarin E, Mazzoni G, Patracchini M, Manfredini F (1996) The Conconi test: methodology after 12 years of application. Int J Sports Med 17:509–519

    Article  PubMed  CAS  Google Scholar 

  18. Cooper KH (1968) Aerobics. Bantam Books, New York

    Google Scholar 

  19. Coyle EF (2005) Improved muscular efficiency displayed as Tour de France champion matures. J Appl Physiol 98:2191–2196

    Article  PubMed  Google Scholar 

  20. Cumming GR, Borsyk LM (1972) Criteria for maximum oxygen uptake in men over 40 in a population survey. Med Sci Sports Exerc 4:18–20

    CAS  Google Scholar 

  21. Davies B, Dagget A, Jakeman P, Mulhall J (1984) Maximum oxygen uptake utilizing different treadmill protocols. Br J Sports Med 18:74–79

    Article  PubMed  CAS  Google Scholar 

  22. Davis JA, Frank MH, Whipp BJ, Wasserman K (1979) Anaerobic threshold alterations caused by endurance training in middle-aged men. J Appl Physiol 46:1039–1046

    PubMed  CAS  Google Scholar 

  23. Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P (2003) Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol 89:281–288

    Article  PubMed  CAS  Google Scholar 

  24. Dickhuth H-H, Huonker M, Münzel T, Drexler H, Berg A, Keul J (1991) Individual anaerobic threshold for evaluation of competitive athletes and patients with left ventricular dysfunction. In: Bachl N, Graham TE, Löllgen H: Advances in Ergometry. Springer, Berlin, S 173–179

    Google Scholar 

  25. Dickhuth HH, Yin L, Niess A, Rocker K, Mayer F, Heitkamp HC, Horstmann T (1999) Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med 20:122–127

    Article  PubMed  CAS  Google Scholar 

  26. Dickstein K, Barvik S, Aarsland T, Snapinn S, Karlsson J (1990) A comparison of methodologies in detection of the anaerobic threshold. Circulation 81:II38–II46

    PubMed  CAS  Google Scholar 

  27. Dobeln WV, Astrand I, Bergstrom A (1967) An analysis of age and other factors related to maximal oxygen uptake. J Appl Physiol 22:934–938

    Google Scholar 

  28. Doherty M, Nobbs L, Noakes TD (2003) Low frequency of the “plateau phenomenon” during maximal in elite British athletes. Eur J Appl Physiol 89:619–623

    Article  PubMed  CAS  Google Scholar 

  29. Duncan GE, Howley ET, Johnson BN (1997) Applicability of VO2max criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc 29:273–278

    PubMed  CAS  Google Scholar 

  30. European Society of Cardiology, Task Force (1997) Management of stable angina pectoris. Eur Heart J 18:394–413

    Google Scholar 

  31. Faude O, Meyer T, Kindermann W (2006) The work rate corresponding to ventilatory threshold during steady-state and ramp exercise. Int J Sports Physiol Perform 1:222–232

    PubMed  Google Scholar 

  32. Froelicher VF Jr, Brammell H, Davis G, Noguera I, Stewart A, Lancaster MC (1974) A comparison of the reproducibility and physiologic response to three maximal treadmill exercise protocols. Chest 65:512–517

    Article  PubMed  Google Scholar 

  33. Froelicher VF Jr, Brammell H, Davis G, Noguera I, Stewart A, Lancaster MC (1974) A comparison of three maximal treadmill exercise protocols. J Appl Physiol 36:720–725

    PubMed  Google Scholar 

  34. Gaskill SE, Walker AJ, Serfass RA, Bouchard C, Gagnon J, Rao DC, Skinner JS, Wilmore JH, Leon AS (2001) Changes in ventilatory threshold with exercise training in a sedentary population: the HERITAGE family study. Int J Sports Med 22:586–592

    Article  PubMed  CAS  Google Scholar 

  35. Gitt AK, Winter UJ, Fritsch J, Pothoff G, Sedlak M, Ehmanns S, Ostmann H, Hilger HH (1994) Vergleich der vier verschiedenen Methoden zur respiratorischen Bestimmung der anaeroben Schwelle bei Normalpersonen, Herz-und Lungenkranken. Z Kardiol 83(Suppl 3):37–42

    PubMed  Google Scholar 

  36. Haass M, Zugck C, Kübler W (2000) Der 6-Minuten-Gehtest: Eine kostengünstige Alternative zur Spiroergometrie bei Patienten mit chronischer Herzinsuffizienz? Z Kardiol 89:72–80

    Article  PubMed  CAS  Google Scholar 

  37. Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol 65:79–83

    Article  CAS  Google Scholar 

  38. Heil DP (1997) Body mass scaling of peak oxygen uptake in 20-to 79-yr-old adults. Med Sci Sports Exerc 29:1602–1608

    PubMed  CAS  Google Scholar 

  39. Hermansen L, Saltin B (1969) Oxygen uptake during maximal treadmill and bicycle exercise. J Appl Physiol 26:31–37

    PubMed  CAS  Google Scholar 

  40. Hoff J (2005) Training and testing physical capacities for elite soccer players. J Sports Sci 23:573–582

    Article  PubMed  Google Scholar 

  41. Hollmann W (1963) Höchst-und Dauerleistungsfähigkeit des Sportlers. Barth, München

    Google Scholar 

  42. Hoogeveen AR, Hoogsteen GS (1999) The ventilatory threshold, heart rate, and endurance performance: relationships in elite cyclists. Int J Sports Med 20:114–117

    Article  PubMed  CAS  Google Scholar 

  43. Howley ET, Bassett DR, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Medicine and Science in Sports and Exercise 27:1292–1301

    PubMed  CAS  Google Scholar 

  44. Hunt HA, Baker DW, Chin MH et al (2001) ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure). Circulation 104:2996–3007

    Article  PubMed  CAS  Google Scholar 

  45. Issekutz B Jr, Birkhead NC, Rodahl K (1962) Use of respiratory quotients in assessment of aerobic work capacity. J Appl Physiol 17:47–50

    Google Scholar 

  46. Katch V, Weltman A, Sady S, Freedson P (1978) Validity of the relative percent concept for equating training intensity. Eur J Appl Physiol 39:219–227

    Article  CAS  Google Scholar 

  47. Katch VL, Sady S, Freedson P (1982) Biological variability in maximum aerobic power. Med Sci Sports Exerc 14:21–25

    PubMed  CAS  Google Scholar 

  48. Kindermann W (1987) Ergometrie-Empfehlungen für die ärztliche Praxis. Dtsch Z Sportmed 38:244–268

    Google Scholar 

  49. Kindermann W (2004) Anaerobe Schwelle. Dtsch Z Sportmed 55:161–162

    Google Scholar 

  50. Kindermann W, Simon G, Keul J (1979) The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 42:25–34

    Article  CAS  Google Scholar 

  51. Kumagai S, Tanaka K, Matsuura Y, Matsuzaka A, Hirakoba K, Asano K (1982) Relationships of the Anaerobic Threshold with the 5 km, 10 km, and 10 Mile Races. Eur J Appl Physiol 49:13–23

    Article  CAS  Google Scholar 

  52. Larsen AI, Aarsland T, Kristiansen M, Haugland A, Dickstein K (2001) Assessing the effect of exercise training in men with heart failure; comparison of maximal, submaximal and endurance exercise protocols. Eur Heart J 22:684–692

    Article  PubMed  CAS  Google Scholar 

  53. Le Jemtel TH, Mancini D, Gumbardo D, Chadwick B (1985) Pitfalls and limitations of “maximal” oxygen uptake as an index of cardiovascular functional capacity in patients with chronic heart failure. Heart Failure May/June:112–124

    Google Scholar 

  54. Lear SA, Brozic A, Myers JN, Ignaszewski A (1999) Exercise stress testing — an overview of current guidelines. Sports Med 27:285–312

    Article  PubMed  CAS  Google Scholar 

  55. Lehmann M, Berg A, Kapp R, Wessinghage T, Keul J (1983) Correlations between laboratory testing and distance running performance in marathoners of similar performance ability. Int J Sports Med 4:226–230

    PubMed  CAS  Google Scholar 

  56. Lentner CE (1990) Geigy Scientific Tables — Volume 5: Heart and Circulation. In: CIBA-GEIGY, Basel, S 209–213

    Google Scholar 

  57. Londeree BR (1997) Effect of training on lactate/ventilatory thresholds: a metaanalysis. Med Sci Sports Exerc 29:837–843

    PubMed  CAS  Google Scholar 

  58. Londeree BR, Moeschberger ML (1984) Influence of age and other factors on maximal heart rate. J Cardiac Rehabil 4:44–49

    Google Scholar 

  59. Lucia A, Pardo J, Durantez A, Hoyos J, Chicharro JL (1998) Physiological differences between professional and elite road cyclists. Int J Sports Med 19:342–348

    Article  PubMed  CAS  Google Scholar 

  60. Mader A, Liesen H, Heck H, Philippi H, Rost R (1976) Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Dtsch Z Sportmed 27:80–112

    Google Scholar 

  61. Mancini D, LeJemtel T, Aaronson K (2000) Peak VO2: a simple yet enduring standard. Circulation 101:1080–1082

    PubMed  CAS  Google Scholar 

  62. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, Wilson JR (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83:778–786

    PubMed  CAS  Google Scholar 

  63. McConnell TR (1988) Practical considerations in the testing of VO2max in runners. Sports Med 5:57–68

    Article  PubMed  CAS  Google Scholar 

  64. McLellan TM (1987) The anaerobic threshold: concept and controversy. Austral J Sci Med Sport 19:3–8

    Google Scholar 

  65. McLellan TM, Skinner JS (1981) The use of the aerobic threshold as a basis for training. Can J Appl Sport Sci 6:197–201

    PubMed  CAS  Google Scholar 

  66. Mead WF, Pyfer HR, Trombold JC, Frederick RC (1976) Successful resuscitation of two near simultaneous cases of cardiac arrest with a review of fifteen cases occurring during supervised exercise. Circulation 53:187–189

    PubMed  CAS  Google Scholar 

  67. Meyer K, Hajric R, Westbrook S, Samek L, Lehmann M, Schwaibold M, Betz P, Roskamm H (1996) Ventilatory and lactate threshold determinations in healthy normals and cardiac patients: methodological problems. Eur J Appl Physiol 72:387–393

    Article  CAS  Google Scholar 

  68. Meyer K, Schwaibold M, Hajric R, Westbrook S, Ebfeld D, Leyk D, Roskamm H (1998) Delayed VO2 kinetics during ramp exercise: a criterion for cardiopulmonary exercise capacity in chronic heart failure. Med Sci Sports Exerc 30:643–648

    Article  PubMed  CAS  Google Scholar 

  69. Meyer T, Davison RCR, Kindermann W (2005) Ambulatory gas exchange measurements — current status and future options —. Int J Sports Med 26:S19–S27

    Article  PubMed  Google Scholar 

  70. Meyer T, Faude O (2006) Feldtests im Fußball. Dtsch Z Sportmed 57:147–148

    Google Scholar 

  71. Meyer T, Faude O, Scharhag J, Urhausen A, Kindermann W (2004) Is lactic acidosis a cause of exercise-induced hyperventilation at the respiratory compensation point? Br J Sports Med 38:622–625

    Article  PubMed  CAS  Google Scholar 

  72. Meyer T, Gabriel HHW, Kindermann W (1999) Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Med Sci Sports Exerc 31: 1342–1345

    Article  PubMed  CAS  Google Scholar 

  73. Meyer T, Görge G, Schwaab B, Hildebrandt K, Walldorf J, Schäfer C, Kindermann I, Scharhag J, Kindermann W (2005) An alternative approach for exercise prescription and efficacy testing in patients with chronic heart failure. A randomized controlled training study. Am Heart J 149:926.e1–926.e7

    Article  Google Scholar 

  74. Meyer T, Kindermann M, Kindermann W (2004) Exercise programs for patients with chronic heart failure — Training methods and effects on endurance capacity. Sports Med 34:939–954

    Article  PubMed  Google Scholar 

  75. Meyer T, Urhausen A, Kindermann W (1999) Kardiovaskuläre und metabolische Beanspruchung der dynamischen Streßechokardiographie bei Patienten mit koronarer Herzkrankheit und bei Gesunden. Z Kardiol 88:473–480

    Article  PubMed  CAS  Google Scholar 

  76. Mitchell HH, Sproule BJ, Chapman CB (1958) The physiological meaning of the maximal oxygen intake test. J Clin Invest 37:538–547

    Article  PubMed  CAS  Google Scholar 

  77. Myers J (2005) Applications of cardiopulmonary exercise testing in the management of cardiovascular and pulmonary disease. Int J Sports Med 26:S49–S55

    Article  PubMed  Google Scholar 

  78. Myers J, Bellin D (2000) Ramp exercise protocols for clinical and cardiopulmonary exercise testing. Sports Med 30:23–29

    Article  PubMed  CAS  Google Scholar 

  79. Myers J, Buchanan N, Walsh D, Krämer M, McAuley P, Hamilton Wessler M, Frölicher VF (1991) Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol 17:1334–1342

    Article  PubMed  CAS  Google Scholar 

  80. Myers J, Walsh D, Sullivan M, Froelicher V (1990) Effect of sampling on variability and plateau in oxygen uptake. J Appl Physiol 68:404–410

    Article  PubMed  CAS  Google Scholar 

  81. Noakes TD (1997) J. B. Wolffe Memorial Lecture. Challenging beliefs: ex Africa semper aliquid novi. Med Sci Sports Exerc 29:571–590

    PubMed  CAS  Google Scholar 

  82. Noakes TD (1998) Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal. Med Sci Sports Exerc 30:1381–1398

    Article  PubMed  CAS  Google Scholar 

  83. Pfitzinger P, Freedson PS (1998) The reliability of lactate measurements during exercise. Int J Sports Med 19:349–357

    Article  PubMed  CAS  Google Scholar 

  84. Poole DC, Gaesser GA (1985) Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol 58:1115–1521

    PubMed  CAS  Google Scholar 

  85. Reinhard U, Muller PH, Schmulling RM (1979) Determination of anaerobic threshold by the ventilation equivalent in normal individuals. Respiration 38:36–42

    PubMed  CAS  Google Scholar 

  86. Remme WJ, Swedberg K (2001) Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 22:1527–1560

    Article  PubMed  CAS  Google Scholar 

  87. Ribeiro JP, Fielding RA, Hughes V, Black A, Bochese MA, Knuttgen HG (1985) Heart rate break point may coincide with the anaerobic and not the aerobic threshold. Int J Sports Med 6:220–224

    Article  PubMed  CAS  Google Scholar 

  88. Rickli H, Kiowski W, Brehm M, Weilenmann D, Schalcher C, Bernheim A, Öchslin E, Brunner-La Rocca HP (2003) Combining low-intensity and maximal exercise test results improves prognostic prediction in chronic heart failure. J Am Coll Cardiol 42:116–122

    Article  PubMed  Google Scholar 

  89. Röcker K, Striegel H, Freund T, Dickhuth H-H (1994) Die funktionelle Pufferkapazität bei 400-m-Läufern, Langstreckenläufern und Untrainierten. In: Liesen H, Weiß M, Baum M: Regulations-und Repairmechanismen, 33. Deutscher Sportärztekongreß Paderborn 1993. Deutscher Ärzte Verlag, Köln, S 28–31

    Google Scholar 

  90. Röcker K, Striegel H, Freund T, Dickhuth HH (1994) Relative functional buffering capacity in 400-meter runners, long-distance runners and untrained individuals. Eur J Appl Physiol 68:430–434

    Article  Google Scholar 

  91. Röcker K, Schotte O, Niess AM, Horstmann T, Dickhuth HH (1998) Predicting competition performance in long-distance running by means of a treadmill test. Med Sci Sports Exerc 30:1552–1557

    Article  Google Scholar 

  92. Rost R, Hollmann W (1982) Belastungsuntersuchungen in der Praxis. Thieme, Stuttgart

    Google Scholar 

  93. Roul G, Moulichon ME, Bareiss P, Gries P, Sacrez J, Germain P, Mossard JM, Sacrez A (1994) Exercise peak VO2 determination in chronic heart failure: is it still of value? Eur Heart J 15:495–502

    PubMed  CAS  Google Scholar 

  94. Shephard RJ (1984) Tests of maximum oxygen intake — a critical review. Sports Med 1:99–124

    Article  PubMed  CAS  Google Scholar 

  95. Shephard RJ, Allen C, Benade AJ, Davies CT, Di Prampero PE, Hedman R, Merriman JE, Myhre K, Simmons R (1968) The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bull World Health Organ 38:757–764

    PubMed  CAS  Google Scholar 

  96. Simon G, Staiger J, Wehinger A, Kindermann W, Keul J (1978) Echokardiographische Größen des linken Ventrikels, Herzvolumen und Sauerstoffaufnahme. Med Klin 73:1457–1462

    PubMed  CAS  Google Scholar 

  97. Simon J, Young JL, Gutin B, Blood DK, Case RB (1983) Lactate accumulation relative to the anaerobic and respiratory compensation thresholds. J Appl Physiol 54:13–17

    PubMed  CAS  Google Scholar 

  98. Stegmann H, Kindermann W (1982) Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol/l lactate. Int J Sports Med 3:105–110

    PubMed  CAS  Google Scholar 

  99. Stegmann H, Kindermann W, Schnabel A (1981) Lactate kinetics and individual anaerobic threshold. Int J Sports Med 2:160–165

    PubMed  CAS  Google Scholar 

  100. Tanaka H, Shindo M (1985) Running velocity at blood lactate threshold of boys aged 6–15 years compared with untrained and trained young males. Int J Sports Med 6:90–94

    PubMed  CAS  Google Scholar 

  101. Tanaka K, Matsuura Y (1984) Marathon performance, anaerobic threshold, and onset of blood lactate accumulation. J Appl Physiol 57:640–643

    PubMed  CAS  Google Scholar 

  102. Tanaka K, Matsuura Y, Kumagai S, Matsuzaka A, Hirakoba K, Asano K (1983) Relationships of anaerobic threshold and onset of blood lactate accumulation with endurance performance. Eur J Appl Physiol 52:51–56

    Article  CAS  Google Scholar 

  103. Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol 8:73–80

    PubMed  CAS  Google Scholar 

  104. Tokmakidis SP, Léger LA, Fotis AV, Roy JY (1987) The Conconi’s heart rate and the lactate “anaerobic threshold”. Med Sci Sports Exerc (Abstract) 19:S 17

    Google Scholar 

  105. Trappe H-J, Löllgen H (2000) Leitlinien zur Ergometrie. Z Kardiol 89:821–837

    Article  PubMed  CAS  Google Scholar 

  106. Tristani FE, Hughes CV, Archibald DG, Sheldahl LM, Cohn JN, Fletcher R (1987) Safety of graded symptom-limited exercise testing in patients with congestive heart failure. Circulation 76:Vi54–58

    PubMed  CAS  Google Scholar 

  107. Urhausen A, Coen B, Kindermann W (2000) Individual assessment of the aerobic-anaerobic threshold by measurement of blood lactate. In: Garrett W Jr, Kirkendall D, Squire D: Textbook of Sports Medicine. Williams & Wilkins, Philadelphia, S. 267–275

    Google Scholar 

  108. Urhausen A, Coen B, Weiler B, Kindermann W (1993) Individual anaerobic threshold and maximum lactate steady state. Int J Sports Med 14:134–139

    PubMed  CAS  Google Scholar 

  109. Wasserman K (1999) Principles of exercise testing and interpretation. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  110. Wasserman K, Stringer WW, Casaburi R, Koike A, Cooper CB (1994) Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects. Z Kardiol 83(Suppl 3):1–12

    PubMed  CAS  Google Scholar 

  111. Wasserman K, Whipp BJ, Koyl SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243

    PubMed  CAS  Google Scholar 

  112. Weltman A, Snead D, Seip R, Schurrer R, Weltman J, Rutt R, Rogol A (1990) Percentages of maximal heart rate, heart rate reserve, and VO2max for determining endurance training intensity in male runners. Int J Sports Med 11:218–222

    PubMed  CAS  Google Scholar 

  113. Weltman A, Weltman J, Rutt R, Seip R, Levine S, Snead D, Kaiser D, Rogol A (1989) Percentages of maximal heart rate, heart rate reserve, and VO2peak for determining endurance training intensity in sedentary women. Int J Sports Med 10:212–216

    PubMed  CAS  Google Scholar 

  114. Winter UJ (1994) Methodische Aspekte der modernen, computerisierten Ergospirometrie (CPX): Rampenprogramm, konstanter Belastungstest und CO2-Rückatmungsmethode. Z Kardiol 83:13–26

    PubMed  Google Scholar 

  115. Yamamoto Y, Miyashita M, Hughson RL, Tamura S, Shinohara M, Mutoh Y (1991) The ventilatory threshold gives maximal lactate steady state. Eur J Appl Physiol 63:55–59

    Article  CAS  Google Scholar 

  116. Zhou S, Weston SB (1997) Reliability of using the D-max method to define physiological responses to incremental exercise testing. Physiol Meas 18:145–154

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Steinkopff Verlag Darmstadt

About this chapter

Cite this chapter

Meyer, T. (2007). Belastungsuntersuchungen: Praktische Durchführung und Interpretation. In: Sportkardiologie. Steinkopff. https://doi.org/10.1007/978-3-7985-1707-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7985-1707-3_3

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1706-6

  • Online ISBN: 978-3-7985-1707-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics