Sequential Stability Procedures for Functional Data Setups

  • Alexander Aue
  • Siegfried Hörmann
  • Lajos Horváth
  • Marie Hušková
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


The talk concerns sequential procedures detection of changes in linear relationship \({\rm{Y}_{k}(t)}\, = \, {\int^{1}_{0}}\,{\Psi}_{k}{\rm(t,\,s)}\,{\rm{X}_{k}(S){ds}}\,+\,{\varepsilon_{k}}{\rm\,(t)},\,{1}\,\leq\,{\rm\,{k}}< \infty\) between random functions Yk and Xk on [0,1], where errors { εk} [0,1] and { Ψk } are operators. Test procedures for testing the constancy of the operators Ψk ’s (i.e., Ψ1 = Ψ2 =…) against a change point alternative when a training sample is available is proposed and studied. The procedure utilizes the functional principal component analysis. Limit behavior of the developed test procedures are investigated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aue, A., H¨ormann, S. Horv´ath, L., Huˇskov´a, M.: Sequential stability test for functional linear models. In preparation (2011)Google Scholar
  2. 2.
    Aue, A., Horv´ath, L., Huˇskov´a, M., Kokoszka, P.: Change-point monitoring in linear models. Econometrics J. 9, 373–403 (2006)Google Scholar
  3. 3.
    Berkes, I., Gombay, E., Horv´ath, L., Kokoszka, P.: Sequential change-point detection in GARCH(p,q) models. Economet. Theor. 20, 1140–1167 (2004)Google Scholar
  4. 4.
    Berkes, I., H¨ormann, S., Schauer, J. (2009+). Split invariance principles for stationary sequences. To appear in Ann. Probab. (2009+)Google Scholar
  5. 5.
    Chu, C.-S., Stinchcombe, M., White, H.: Monitoring structural change. Econometrica 64, 1045–1065 (1996)MATHGoogle Scholar
  6. 6.
    Cyree, K. K., Griffiths, M. D. and Winters, D. B.: An empirical examination of intraday volatility in euro-dollar rates. The Quaterly Review of Economics and Finance 44, 44–57 (2004)CrossRefGoogle Scholar
  7. 7.
    Elazovi´c, S.: Functional modelling of volatility in the Swedish limit order book. Comput. Statist. Data Anal. 53, 2107–2118 (2009)Google Scholar
  8. 8.
    H¨ormann, S., Horv´ath, L., Reeder, R.: Functional volatility sequences. Preprint, University of Utah, Salt Lake City, Utah, USA (2009+)Google Scholar
  9. 9.
    Horv´ath, L., Huˇskov´a, M., Kokoszka, P.: Testing the stability of the functional autoregressive process. J. Multivariate Anal. 101, 352–367 (2010)Google Scholar
  10. 10.
    Horv´ath, L., Huˇskov´a, M., Kokoszka, P., Steinebach, J.:Monitoring changes in linear models. J. Stat. Plan. Infer. 126, 225–251 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexander Aue
    • 1
  • Siegfried Hörmann
    • 2
  • Lajos Horváth
    • 3
  • Marie Hušková
    • 4
  1. 1.University of CaliforniaDavisUSA
  2. 2.UniversitéLibre de BruxellesBrusselsBelgium
  3. 3.University of UtahSalt Lake CityUSA
  4. 4.Charles University of PraguePragueCzech Republic

Personalised recommendations