Robust Nonparametric Estimation for Functional Spatial Regression
Conference paper
First Online:
Abstract
This contribution deals with robust nonparametric regression analysis when the regressors are functional random fields. More precisely, we propose a family of robust nonparametric estimators for nonparametric functional spatial regression based on the kernel method. The main results of this work are the establishment of the almost complete convergence rate of these estimators.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Attouch, M., Laksaci, A., Ould Sa¨ıd, E.: Asymptotic normality of a robust estimator of the regression function for functional time series data. J. Korean Stat. Soc. 39, 489–500 (2010)Google Scholar
- 2.Azzedine, N., Laksaci, A., Ould Sa¨ıd, E.: On the robust nonparametric regression estimation for functional regressor. Stat. Probab. Lett. 78, 3216–3221 (2008)Google Scholar
- 3.Biau, G., Cadre, B.: Nonparametric Spatial Prediction. Stat. Infer. Stoch. Proc. 7, 327–349 (2004)MathSciNetMATHCrossRefGoogle Scholar
- 4.Boente, G., Fraiman, R.: Nonparametric regression estimation. J. Multivariate Anal. 29, 180– 198 (1989)MathSciNetMATHGoogle Scholar
- 5.Boente, G., Gonzalez-Manteiga, W., Gonzalez, A.: Robust nonparametric estimation with missing data. J. Stat. Plan. Infer. 139, 571–592 (2009)MATHCrossRefGoogle Scholar
- 6.Bosq, D.: Linear processes in function spaces. Theory and Application. Lectures Notes in Statistics, 149, Springer Verlag, New-York (2000)Google Scholar
- 7.Carbon, M., Francq, C., Tran, L.T.: Kernel regression estimation for random fields. J. Stat. Plan. Infer. 137, 778–798 (2007)MathSciNetMATHCrossRefGoogle Scholar
- 8.Collomb, G., H¨ardle, W.: Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations. Stoch. Proc. Appl. 23, 77–89 (1986)Google Scholar
- 9.Crambes, C, Delsol, L., Laksaci, A.: Robust nonparametric estimation for functional data. J. Nonparametr. Stat. 20, 573–598 (2008)Google Scholar
- 10.Gheriballah, A., Laksaci, A., Rouane, R.: Robust nonparametric estimation for spatial regression. J. Stat. Plan. Infer. 140, 1656–1670 (2010)MathSciNetMATHCrossRefGoogle Scholar
- 11.Guyon, X.: Estimation d’un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien. Proceedings of the Sixth Franco-Belgian Meeting of Statisticia (1987)Google Scholar
- 12.Fan, J., Hu, T.C., Truong, Y.K.: Robust nonparametric function estimation. Scand. J. Stat. 21, 433–446 (1994)MathSciNetMATHGoogle Scholar
- 13.Ferraty, F., Vieu, P.: Nonparametric functional data analysis: Theory and Practice. Springer, New York (2006)MATHGoogle Scholar
- 14.Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)MathSciNetMATHCrossRefGoogle Scholar
- 15.La¨ıb, N., Ould-Sa¨ıd, E.: A robust nonparametric estimation of the autoregression functionunder an ergodic hypothesis. Canad. J. Stat. 28, 817–828 (2000)Google Scholar
- 16.Li, J., Tran, L.T.: Nonparametric estimation of conditional expectation. J. Stat. Plan. Infer. 139, 164–175 (2009)MathSciNetMATHCrossRefGoogle Scholar
- 17.Ramsay, J. O., Silverman, B. W.: Functional data analysis (Second Edition). Springer, New York (2005)Google Scholar
- 18.Robinson, R.: Robust Nonparametric Autoregression. Lecture Notes in Statistics, 26, Springer Verlag, New York (1984)Google Scholar
- 19.Tran, L.T.: Kernel density estimation on random fields. J.Multivariate Anal. 34, 37–53 (1990)MathSciNetMATHCrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011