Periodically Correlated Autoregressive Hilbertian Processes of Order p

Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


We consider periodically correlated autoregressive processes of order p in Hilbert spaces. Our studies on these processes involve existence, strong law of large numbers, central limit theorem and parameter estimation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Besse, P., Cardot, H.: Approximation spline de la pr´evision d’un processus fonctionnel autor ´egressif d’ordre. Canad. J. Stat. 24, 467–487 (1996)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bosq, D.: Linear Processes in Function Spaces. Theory and Applications. Lecture Notes in Statistics, 149, Springer Verlag, Berlin (2000)Google Scholar
  3. 3.
    Horvath, L., Huskova, M., Kokoszka, P.: Testing the stability of the functional autoregressive process. J. Multivariate Anal. 101, 352–367 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Mas, A.:Weak convergence for the covariance operators of a Hilbertian linear process. Stoch. Proc. Appl. 99, 117–135 (2002)Google Scholar
  5. 5.
    Mas, A.: Weak convergence in the functional autoregressive model. J. Multivariate Anal. 98, 1231–1261 (2007)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Mourid, T.: Processus autoregressifs d’ordre superieur. Acad. Sci. 167–172 (1993)Google Scholar
  7. 7.
    Pumo, B.: Prediction of continuous time processes by C[0,1]-valued autoregressive process. Stat. Infer. Stoch. Proc. 3, 1–13 (1999)Google Scholar
  8. 8.
    Soltani, A.R., Shishehbor, Z.: A spectral representation for weakly periodic sequences of bounded linear transformations. Acta. Math. Hungar 80, 265–270 (1998)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Soltani, A.R., Shishehbor, Z.: Weakly periodic sequences of bounded linear transformations: A spectral characterization. J. Georgian Math. 6, 91–98 (1999)MATHCrossRefGoogle Scholar
  10. 10.
    Soltani, A.R., Hashemi, M.: Periodically Correlated Autoregressive Hilbertian Processes. Stat. Infer. Stoch. Proc., to appear (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Kuwait UniversityKuwaitKuwait
  2. 2.Shiraz UniversityShirazIran

Personalised recommendations