Clustering Spatially Correlated Functional Data

Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

In this paper we discuss and compare two clustering strategies: a hierarchical clustering and a dynamic clustering method for spatially correlated functional data. Both the approaches aim to obtain clusters which are internally homogeneous in terms of their spatial correlation structure. With this scope they incorporate the spatial information into the clustering process by considering, in a different manner, a measure of spatial association ables to emphasize the average spatial dependence among curves: the trace-variogram function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delicado, P., Giraldo, R., Comas, C., Mateu, J.:Statistics for spatial functional data: some recent contributions. Environmetrics 21, 224–239 (2010)Google Scholar
  2. 2.
    Diday, E.: La méthode des Nuées dynamiques. Revue de Statistique Appliqu´ee 19 (2), 19–34 (1971)Google Scholar
  3. 3.
    Giraldo, R., Delicado, P., Comas, C., Mateu, J.: Hierarchical clustering of spatially correlated functional data. Technical Report. Available at www.ciencias.unal.edu.co/unciencias/datafile/ estadistica/RepInv12.pdf (2009)
  4. 4.
    Giraldo, R., Delicado, P., Mateu, J.: Ordinary kriging for function-valued spatial data. J. Environment. Ecol. Stat. To appear (2010)Google Scholar
  5. 5.
    Jiang, H., Serban, N.: Clustering Random Curves Under Spatial Interdependence: Classification of Service Accessibility. Technometrics, to appear (2010)Google Scholar
  6. 6.
    Ramsay, J.E., Silverman, B.W.: Functional Data Analysis (Second Edition). Springer (2005)Google Scholar
  7. 7.
    Romano E., Balzanella A., Verde R.: Clustering Spatio-functional data: a model based approach. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin-Heidelberg, New York (2010a)Google Scholar
  8. 8.
    Romano E., Balzanella A., Verde R.: A new regionalization method for spatially dependent functional data based on local variogram models: an application on environmental data. In: Atti delle XLV Riunione Scientifica della Societ´a Italiana di Statistica Universit´a degli Studi di Padova Padova. Padova, 16–18 giugno 2010. CLEUP, ISBN/ISSN: 978 88 6129 566 7 (2010b)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Seconda Universitá degli Studi di NapoliNaplesItaly
  2. 2.Universidad Nacional de ColombiaBogotaColombia
  3. 3.Universitat Politécnica de CatalunyaBarcelonaSpain

Personalised recommendations