Advertisement

On the Properties of Functional Depth

Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

The properties that a functional depth should satisfy are proposed and a functional depth that fulfills them is defined. Before, the properties of the multidimensional depth were sought when dealing with functional depths.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cuesta-Albertos J.A., Nieto-Reyes, A.: The random Tukey depth. Comput. Stat. Data An. 52 (11), 4979–4988 (2008)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Cuesta-Albertos J.A., Nieto-Reyes, A.: Functional Classification and the Random Tukey Depth. Practical Issues. In: Borgelt, C., Gonzalez-Rodriguez, G., Trutschnig, W., Lubiano, M.A., Gil, M.A., Grzegorzewski, P., Hryniewicz, O. (eds.) Combining Soft Computing and Statistical Methods in Data Analysis, pp. 121–126. Springer (2008)Google Scholar
  3. 3.
    Cuesta-Albertos J.A, Nieto-Reyes, A.: A random functional depth. In: Dabo-Niang, S., Ferraty, F. (eds.) Functional and Operational Statistics, pp. 121–126. Springer (2010)Google Scholar
  4. 4.
    Cuevas, A., Febrero-Bande, M, Fraiman, R.: Robust estimation and classification for functional data via projection-based depth notions. Computation. Stat. 22 (3), 481–496 (2007)Google Scholar
  5. 5.
    Cuevas, A, Fraiman, R.: On depth measures and dual statistics. A methodology for dealing with general data. J. Multivariate Anal. 100 (4), 753–766 (2009)Google Scholar
  6. 6.
    Dabo-Niang, S, Ferraty, F.: Functional and Operational Statistics. Springer (2008)Google Scholar
  7. 7.
    Fraiman, R, Muniz, G.: Trimmed means for functional data. TEST 10 (2), 419–440 (2001)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Liu, R.Y.: On a notion of data depth based on random simplices. Ann. Stat. 18, 405–414 (1990)MATHCrossRefGoogle Scholar
  9. 9.
    López-Pintado, S., Romo, J.: Depth-based classification for functional data. Amer.Math. Soc. DIMACS Series 72, 103–119 (2006)Google Scholar
  10. 10.
    López-Pintado, S., Romo, J.: On the concept of depth for functional data. J. Am. Stat. Assoc. 104 (486), 718–734 (2009)CrossRefGoogle Scholar
  11. 11.
    Mahalanobis, P. C.: On the generalized distance in statistics. Proc. Natl. Inst. Science 12, 49–55 (1936)Google Scholar
  12. 12.
    Oja, H.: Descriptive statistics for multivariate distributions. Stat. Probab. Lett. 1, 327–332 (1983)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Tukey, J.W.: Mathematics and picturing of data. Proceedings of ICM, Vancouver 2, 523–531 (1975)MathSciNetGoogle Scholar
  14. 14.
    Zuo, Y, Serfling, R.: General notions of statistical depth function. Ann. Stat. 28 (2), 461–482 (2000)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Universidad de CantabriaCantabriaSpain

Personalised recommendations