Functional Varying Coefficient Models

  • Hans-Georg Müller
  • Damla Şentürk
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


Functional varying coefficient models provide a versatile and flexible analysis tool for relating longitudinal responses to longitudinal predictors. Two key innovations are: Representing the varying coefficient functions through auto- and cross-covariances of the underlying stochastic processes; and including history effects through a smooth history index function. This presentation is a review of the paper Şentürk and Müller (2010).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cardot, H., Ferraty, F., Sarda, P.: Spline estimators for the functional linear model. Stat. Sinica 13, 571–591 (2003)MathSciNetMATHGoogle Scholar
  2. 2.
    Chiang, C. T., Rice, J. A., Wu, C. O.: Smoothing spline estimation for varying coefficient models with repeatedly measured dependent variables. J. Am. Stat. Assoc. 96, 605–619 (2001)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Cleveland, W. S., Grosse, E., Shyu, W. M.: Local regression models. In: Chambers, J. M., Hastie, T. J. (eds.) Statistical Models in S, pp. 309–376, Wadsworth & Brooks, Pacific Grove.Google Scholar
  4. 4.
    Cuevas, A., Febrero, M., Fraiman, R.: Linear functional regression: the case of fixed design and functional response. Canad. J. Stat. 33, 285–300 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis. Springer, New York (2006)MATHGoogle Scholar
  6. 6.
    Huang, J. Z., Wu, C. O., Zhou, L.: Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Stat. Sinica 14, 763–788 (2004)MathSciNetMATHGoogle Scholar
  7. 7.
    James, G., Hastie, T. J., Sugar, C. A.: Principal component models for sparse functional data. Biometrika 87, 587–602 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Malfait, N., Ramsay, J. O.: The historical functional linear model. Canad. J. Stat. 31, 115–128 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    M¨uller, H.G., Yao, F.: Functional additivemodels. J. Am. Stat. Assoc. 103, 1534–1544 (2008)Google Scholar
  10. 10.
    M¨uller, H. G., Zhang, Y.: Time-varying functional regression for predicting remaining lifetime distributions from longitudinal trajectories. Biometrics 61, 1064–1075 (2005)Google Scholar
  11. 11.
    Ramsay, J. O., Silverman, B. W.: Functional Data Analysis (Second Edition). Springer, New York (2005)Google Scholar
  12. 12.
    Ramsay, J. O., Dalzell, C. J.: Some tools for functional data analysis. J. Roy. Stat. Soc. B 53, 539–572 (1991)MathSciNetMATHGoogle Scholar
  13. 13.
    S¸entürk, D., Müller, H. G.: Generalized varying coefficient models for longitudinal data. Biometrika 95, 653–666 (2008)Google Scholar
  14. 14.
    S¸entürk, D., Müller, H.G.: Functional varying coefficient models for longitudinal data. J. Am. Stat. Assoc. 105, 1256–1264 (2010)Google Scholar
  15. 15.
    Wu, C. O., Chiang, C. T.: Kernel smoothing on varying coefficient models with longitudinal dependent variable. Stat. Sinica 10, 433–456 (2000)MathSciNetMATHGoogle Scholar
  16. 16.
    Yao, F.,Müller, H. G.,Wang, J. L.: Functional linear regression analysis for longitudinal data. Ann. Stat. 33, 2873–2903 (2005a)MATHCrossRefGoogle Scholar
  17. 17.
    Yao, F., Müller, H.G., Wang, J.L.: Functional data analysis for sparse longitudinal data. J. Am. Stat. Assoc. 100, 577–590 (2005b)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.University of CaliforniaDavisUSA
  2. 2.Penn State UniversityUniversity ParkUSA

Personalised recommendations