Multiple Functional Regression with both Discrete and Continuous Covariates

  • Hachem Kadri
  • Philippe Preux
  • Emmanuel Duflos
  • Stéphane Canu
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

In this paper we present a nonparametric method for extending functional regression methodology to the situation where more than one functional covariate is used to predict a functional response. Borrowing the idea from Kadri et al. (2010a), the method, which support mixed discrete and continuous explanatory variables, is based on estimating a function-valued function in reproducing kernel Hilbert spaces by virtue of positive operator-valued kernels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoch, J., Prchal, L., De Rosa, M., Sarda, P.: Functional linear regression with functional response: application to prediction of electricity consumption. IWFOS’2008 Proceedings, Functional and operatorial statistics, Physica-Verlag, Springer (2008)Google Scholar
  2. 2.
    Cardot, H., Ferraty, F. and Sarda, P.: Functional linear model. Stat. Probab. Lett. 45, 11–22 (199)Google Scholar
  3. 3.
    Cardot, H., Ferraty, F., Sarda, P.: Spline Estimators for the Functional Linear Model. Stat. Sinica 13, 571–591 (2003)MathSciNetMATHGoogle Scholar
  4. 4.
    Chiou, J.M., M¨uller, H.G.,Wang, J.L.: Functional response models. Stat. Sinica 14, 675–693 (2004)Google Scholar
  5. 5.
    Cuevas, A., Febrero, M., Fraiman, R.: Linear functional regression: the case of fixed design and functional response. Canad. J. Stat. 30, 285–300 (2002)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Evgeniou, T.,Micchelli, C. A., Pontil, M.: Learning multiple tasks with kernel methods. Journal of Machine Learning Research 6, 615–637 (2005)MathSciNetGoogle Scholar
  7. 7.
    Faraway, J.: Regression analysis for a functional response. Technometrics 39, 254–262 (1997) 8. Ferraty, F., Vieu, P.: The functional nonparametric model and applications to spectrometric data. Computation. Stat. 17, 545–564 (2002)Google Scholar
  8. 8.
    Ferraty, F., Vieu, P.: Curves discrimination: a nonparametric functional approach. Comput. Stat. Data Anal. 44, 161–173 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis. Springer, New York (2006) 11. Han, S.W., Serban, N., Rouse, B.W.: Novel Perspectives On Market Valuation of Firms Via Functional Regression. Technical report, Statistics group, Georgia Tech. (2007)Google Scholar
  10. 10.
    He, G., Müller, H.G., Wang, J.L.: Extending correlation and regression from multivariate to functional data. In: Puri, M.L. (ed.) Asymptotics in statistics and probability, VSP International Science Publishers, pp. 301–315 (2000)Google Scholar
  11. 11.
    James, G.: Generalized linear models with functional predictors. J. Royal Stat. Soc. B 64, 411–432 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Kadri, H., Preux, P., Duflos, E., Canu, S., Davy, M.: Nonlinear functional regression: a functional RKHS approach. In: Proc. of the 13th Int’l Conf. on Artificial Intelligence and StatisticsGoogle Scholar
  13. 13.
    (AI & Stats). JMLR: W&CP 9, pp. 374–380 (2010a)Google Scholar
  14. 14.
    Kadri, H., Preux, P., Duflos, E., Canu, S., Davy, M.: Function-Valued Reproducting Kernel Hilbert Spaces and Applications. NIPS workshop on TKML (2010b)Google Scholar
  15. 15.
    Lian, H.: Nonlinear functional models for functional responses in reproducing kernel hilbert spaces. Canad. J. Stat. 35, 597–606 (2007)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Matsui, H., Kawano, S., Konishi, S.: Regularized functional regression modeling for functional response and predictors. Journal of Math-for-industry, 1, 17–25 (2009)MathSciNetMATHGoogle Scholar
  17. 17.
    Müller, H.G., Stadtm¨uller, U.: Generalized functional linear models. Ann. Stat. 33, 774–805 (2005)Google Scholar
  18. 18.
    Prchal, L., Sarda, P. (2007). Spline estimator for the functional linear regression with functional response. Preprint (2007)Google Scholar
  19. 19.
    Preda, C.: Regression models for functional data by reproducing kernel Hilbert spaces methods. J. Stat. Plan. Infer. 137, 829–840 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Ramsay, J., Dalzell, C.J.: Some tools for functional data analysis. J. Roy. Stat. Soc. B 53, 539–572 (1991)MathSciNetMATHGoogle Scholar
  21. 21.
    Ramsay, J., Silverman, B.: Applied functional data analysis. Springer, New York (2002)MATHCrossRefGoogle Scholar
  22. 22.
    Ramsay, J., Silverman, B.: Functional data analysis (Second Edition). Springer, New York (2005)Google Scholar
  23. 23.
    Rossi, F., Villa, N.: Support vector machine for functional data classification. Neurocomputing 69 (7–9), 730–742 (2006)CrossRefGoogle Scholar
  24. 24.
    Valderrama, M.J., Ocañna, F.A., Aguilera, A.M., Ocaña-Peinado, F.M.: Forecasting pollen concentration by a two-Step functional model. Biometrics 66, 578–585 (2010)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hachem Kadri
    • 1
  • Philippe Preux
    • 2
  • Emmanuel Duflos
    • 1
  • Stéphane Canu
    • 3
  1. 1.INRIA Lille - Nord Europe/Ecole Centrale de LilleVilleneuve d’AscqFrance
  2. 2.INRIA Lille - Nord Europe/Université de LilleVilleneuve d’AscqFrance
  3. 3.INSA de RouenSt Etienne du RouvrayFrance

Personalised recommendations