Advertisement

Functional Quantiles

Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

A new projection-based definition of quantiles in a multivariate setting is proposed. This approach extends in a natural way to infinite-dimensional Hilbert and Banach spaces. Sample quantiles estimating the corresponding population quantiles are defined and consistency results are obtained. Principal quantile directions are defined and asymptotic properties of the empirical version of principal quantile directions are obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanke, D.: Adaptive sampling schemes for density estimation. J. Stat. Plan. Infer. 136 (9), 2898–2917 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Blanke, D., Bosq, D.: Accurate rates of density estimators for continuous-time processes. Statist. Probab. Lett. 33 (2), 185–191 (1997)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Carbon, M., Hallin, M., Tran, L.: Kernel density estimation for random fields: the L1 theory. J. Nonparametr. Stat. 6 (2–3), 157–170 (1996)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Carbon, M., Hallin, M., Tran, L.: Kernel density estimation for random fields (density estimation for random fields). Statist. Probab. Lett. 36 (2), 115–125 (1997)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Castellana, J. V., Leadbetter, M. R.: On smoothed probability density estimation for stationary processes. Stoch. Process. Appl. 21 (2), 179–193 (1986)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Ferraty, F., Romain, Y.: The Oxford Handbook of Functional Data Analysis. Oxford University Press (2011)Google Scholar
  7. 7.
    Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York (2006)MATHGoogle Scholar
  8. 8.
    Geman, D., Horowitz, J.: Smooth perturbations of a function with a smooth local time. T. Am. Math. Soc. 267 (2), 517–530 (1981)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Gonz´alez Manteiga, W., Vieu, P.: Statistics for functional data. Comput. Stat. Data Anal. 51, 4788–4792 (2007)Google Scholar
  10. 10.
    Hallin, M., Lu, Z., Tran, L.: Density estimation for spatial linear processes. Bernoulli 7 (4), 657–668 (2001)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hallin, M., Lu, Z., Tran, L.: Kernel density estimation for spatial processes: the L1 theory. Ann. Stat. 88, 61–75 (2004)MathSciNetMATHGoogle Scholar
  12. 12.
    Kutoyants, Y.: On invariant density estimation for ergodic diffusion processes. SORT. 28 (2), 111–124 (2004)MathSciNetMATHGoogle Scholar
  13. 13.
    Labrador, B.: Strong pointwise consistency of the kT -occupation time density estimator. Statist. Probab. Lett. 78 (9), 1128–1137 (2008)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Llop, P., Forzani, L., Fraiman, R.: On local times, density estimation and supervised classification from functional data. J. Multivariate Anal. 102 (1), 73–86 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Nguyen, H.: Density estimation in a continuous-time stationary markov process. Ann. Stat. 7 (2), 341–348 (1979)MATHCrossRefGoogle Scholar
  16. 16.
    Ramsay, J., Silverman, B.: Applied Functional Data Analysis.Method and case studies. Series in Statistics, Springer, New York (2002)MATHCrossRefGoogle Scholar
  17. 17.
    Ramsay, J., Silverman, B. (2005). Functional Data Analysis (Second Edition). Series in Statistics, Springer, New York (2005)Google Scholar
  18. 18.
    Rosenblatt, M.: Density estimates and markov sequences. Nonparametric Techniques in Statistical Inference. Cambridge Univ. Press. Mathematical Reviews, 199–210 (1970)Google Scholar
  19. 19.
    Tang, X., Liu, Y., Zhang, J., Kainz, W.: Advances in Spatio-Temporal Analysis. ISPRS Book Series, Vol. 5 (2008)Google Scholar
  20. 20.
    ran, L., Yakowitz, S.: Nearest neighbor estimators for random fields. J. Multivariate Anal. 44 (1), 23–46 (1993)Google Scholar
  21. 21.
    ran, L. T.: Kernel density estimation on random fields. J. Multivariate Anal. 34 (1), 37–53 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Universidad de San AndrèsGreater Buenos AiresArgentina
  2. 2.Universida de la RepÙblicaMontevideoUruguay
  3. 3.Universidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations