Penalized Spline Approaches for Functional Principal Component Logit Regression

  • A. Aguilera
  • M. C. Aguilera-Morillo
  • M. Escabias
  • M. Valderrama
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

The problem of multicollinearity associated with the estimation of a functional logit model can be solved by using as predictor variables a set of functional principal components. The functional parameter estimated by functional principal component logit regression is often unsmooth. To solve this problem we propose two penalized estimations of the functional logit model based on smoothing functional PCA using P-splines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2)Google Scholar
  2. 3.
    Cardot, H., Sarda, P.: Estimation in generalized linear models for functional data via penalized likelihood. J. Multivariate Anal. 92(1), 24–41 (2005) 1 Penalized Spline Approaches for Functional Principal Component Logit Regression 7Google Scholar
  3. 4.
    Escabias, M., Aguilera, A. M., Valderrama. M. J.: Principal component estimation of functional logistic regression: discussion of two different approaches. J. Nonparametr. Stat. 16(3- 4), 365–384 (2004)Google Scholar
  4. 5.
    Escabias, M., Aguilera, A. M., Valderrama. M. J.: Functional PLS logit regression model. Comput. Stat. Data An. 51, 4891–4902 (2006)Google Scholar
  5. 6.
    Ferraty, F., Vieu, P.: Curves discrimination: a nonparametric functional approach. Comput. Stat. Data An. 44, 161–173 (2003)MathSciNetMATHCrossRefGoogle Scholar
  6. 7.
    Marx, B.D., Eilers, P.H.C.: Generalized linear regression on sampled signals and curves. A P-spline approach. Technometrics 41, 1–13 (1999)Google Scholar
  7. 8.
    Mason, S.J., Graham, N.E.: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Q. J. Roy. Meteor. Soc. 128, 291–303 (2002)CrossRefGoogle Scholar
  8. 9.
    Oca˜na, F.A., Aguilera, A.M. and Escabias, M.: Computational considerations in functional principal component analysis. Computation. Stat. 22(3), 449–465 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. Aguilera
    • 1
  • M. C. Aguilera-Morillo
    • 1
  • M. Escabias
    • 1
  • M. Valderrama
    • 1
  1. 1.Department of Statistics and O. R.University of GranadaGranadaSpain

Personalised recommendations