Skip to main content

Human Bioclimate and Thermal Stress in the Megacity of Dhaka, Bangladesh: Application and Evaluation of Thermophysiological Indices

  • Chapter
  • First Online:
Health in Megacities and Urban Areas

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

Human bioclimate refers to the entirety of all climatological and meteorological parameters affecting the living organism. The relevance of climate and weather for human health was already recognized by Hippocrates (Hippocrates Reprint). Later, Alexander von Humboldt defined climate as changes of the atmosphere affecting the human organism, thus putting human bioclimatological aspects in focus (von Humboldt 2004) Energy released or absorbed by change of the aggregate state of water. Since then, numerous studies have been published focusing on the atmosphere-health relationship describing seasonal variations and non-linear relationships between multiple disease (e.g. cardio-respiratory, infectious) and temperature (Burkart and Endlicher 2009; Kunst et al. 1993; Braga et al. 2001; Braga et al. 2002; Basu and Samet 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Commonly climate refers to the weather in some location averaged over some long period of time. Following this definition, climatological influences occur on a long-term scale and meteorological influences on a short-term scale. However, the direction and magnitude of short-term meteorological influences on human health depend on climate. Therefore, a strict distinction of the terms climate/climatological and weather/meteorological is often not possible or feasible. Particularly, in the realm of bioclimatic research this definition is not adhered to rigorously (e.g. climate definition given by Humboldt). In this article the terms climate and climatological comprise short-term and long-term influences.

  2. 2.

    Energy released or absorbed by change of the aggregate state of water.

  3. 3.

    For example: Three heat waves were observed in May over the 10-year data period with the following duration time: (a) 2 days (48 h), (b) 4 days (96 h) and (c) 3½ days (60 h). The number of occurring heat wave days was divided by the number of possible heat wave days: (2 + 4 + 3½)/310.

  4. 4.

    The energy amount needed to evaporate 1 g of water, increasing relative humidity of one cubic meter air about 2–3% is up to about 7 kJ. The same amount of energy would increase the sensible heat of one cubic meter air about 2 K. (Evaporation enthalpy, specific heat capacity and air mass per cubic meter are temperature dependent. The calculations are based on average values for approximately 30°C.)

References

  • Basu R, Samet JM (2002) Relation between Elevated Ambient Temperature and Mortality: A Review of the Epidemiologic Evidence. Epidemiologic Reviews; 24 (2):190-202. doi:10.1093/epirev/mxf007

    Article  PubMed  Google Scholar 

  • Becker S (1981) Seasonality of Deaths in Matlab, Bangladesh. International Journal of Epidemiology; 10 (3):271-280

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Weng S (1998) Seasonal Patterns of Deaths in Matlab, Bangladesh. International Journal of Epidemiology; 27 (5):814-823

    Article  PubMed  CAS  Google Scholar 

  • Braga AL, Zanobetti A, Schwartz J (2001) The Time Course of Weather Related Deaths. Epidemiology; 12 (6):662-667

    Article  PubMed  CAS  Google Scholar 

  • Braga AL, Zanobetti A, Schwartz J (2002) The Effect of Weather on Respiratory and Cardiovascular Deaths in 12 U.S. Cities. Environmental Health Perspectives; 110 (9):859-863

    Article  PubMed  Google Scholar 

  • Bull G (1980) The weather and deaths from pneumonia. The Lancet; 315 (8183):1405-1408

    Article  Google Scholar 

  • Burkart K, Endlicher W (2009) Assessing the Atmospheric Impact on Public Health in the Megacity of Dhaka, Bangladesh. Die Erde; 140 (1):93-109

    Google Scholar 

  • Burkart K, Breitner S, Schneider A, Khan M, Krämer A, Endlicher W (2011): The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environmental Pollution, in press

    Google Scholar 

  • Büttner K (1938) Physikalische Bioklimatologie. Akademische Verlagsgesellschaft Leipzig

    Google Scholar 

  • Cabanac M, Brimmel H (1987) The pathology of human temperature regulation: Thermiatrics. Experientia; 43:19-27

    Article  PubMed  CAS  Google Scholar 

  • Douglas AS, Rawles JM, Al-Sayer H, Allan TM (1991) Seasonality of disease in Kuwait. The Lancet; 337 (8754):1393-1397

    Article  CAS  Google Scholar 

  • Driscoll DM (1985) Human health. Handbook of Applied Meteorology. John Wiley and Sons

    Google Scholar 

  • Eurowinter Group (1997) Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. Lancet; 349:1341-1346

    Article  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. Journal of Applied Physiology 87 (5):1957-1972

    PubMed  CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. International Journal of Biometeorology 45 (2):143-159

    Article  PubMed  CAS  Google Scholar 

  • Hippocrates. (Written 400 B.C.E ) On Airs, Waters, and Places (Reprint). Kessinger Publishing’s Rare Reprints

    Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology; 43:71-75

    Article  PubMed  Google Scholar 

  • Huynen MMTE, Martens P, Schram D, Weijenberg MP, Kunst AE (2001) The Impact of Heat Waves and Cold Spells on Mortality Rates in the Dutch Population. Environmental Health Perspectives; 109 (5):463–470

    Article  PubMed  CAS  Google Scholar 

  • Jendritzky G, Havenith G, Weihs P, Batchvarova E, DeDear R The Universal Thermal Climate Index UTCI. In: NCUB London, London, September 20 2007.

    Google Scholar 

  • Kalkstein LS, Smoyer KE (1993) The impact of climate change on human health: Some international implications. Experimentia; 49:44-64

    Google Scholar 

  • Keatinge W, Donaldson G (1995) Cardiovascular mortality in winter. Arctic Medical Research; 54 (suppl 2):16-18

    PubMed  Google Scholar 

  • Keatinge W, Coleshaw S, Cotter F, Mattock M, Murphy M, Chelliah R (1984) Increases in platelet and red cell counts, blood viscosity, and arterial pressure during mild surface cooling: factors in mortality from coronary and cerebral thrombosis in winter. British Medical Journal (Clin Res Ed); 289 (6456):1405-1408

    Article  CAS  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift; 15:259-263

    Article  Google Scholar 

  • Kunst AE, Looman CWN, Mackenbach JP (1993) Outdoor Air Temperature and Mortality in the Netherlands: A Time-Series Analysis. American Journal of Epidemiology; 137 (3):331-341

    PubMed  CAS  Google Scholar 

  • Medina-Ramón M, Zanobetti A, Cavanagh DP, Schwartz J (2006) Extreme Temperatures and Mortality: Assessing Effect Modification by Personal Characteristics and Specific Cause of Death in a Multi-City Case-Only Analysis. Environmental Health Perspectives; 114 (9):1331-1336

    Article  PubMed  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science; 305 (5686):994-997

    Article  PubMed  CAS  Google Scholar 

  • Millqvist E, Bengtsson U, Bake B (1987) Occurrence of breathing problems induced by cold climate in asthmatics--a questionnaire survey. European Journal of Respiratory Diseases; 71 (5):444-449

    PubMed  CAS  Google Scholar 

  • Neild P, Syndercombe-Court D, Keatinge W, Donaldson G, Mattock M, Caunce M (1994) Cold-induced increases in erythrocyte count, plasma cholesterol and plasma fibrinogen of elderly people without a comparable rise in protein C or factor X. Clinical Science; 86:43-48

    PubMed  CAS  Google Scholar 

  • Oke T (1973) City size and the urban heat island. Atmospheric Environment; 7 (8):769-779

    Article  Google Scholar 

  • Ophir D, Elad Y (1987) Effects of steam inhalation on nasal patency and nasal symptoms in patients with the common cold. American Journal of Otolaryngology 8(3):149-153

    Article  PubMed  CAS  Google Scholar 

  • Parsons K (2003) Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort and Performance, Second Edition. Taylor & Francis, London

    Google Scholar 

  • Robinson PJ (2001) On the Definition of a Heat Wave. Journal of Applied Meteorology; 40 (4):762-775

    Article  Google Scholar 

  • Roth M (2007) Review of urban climate research in (sub)tropical regions. International Journal of Climatology; 27 (14):1859-1873

    Article  Google Scholar 

  • Staiger H, Bucher K, Jendritzky G (1997) Gefühlte Temperatur. Die physiologisch gerechte Bewertung von Wärmebelastung und Kältestress beim Aufenthalt im Freien mit der Maßzahl Grad Celsius. Annalen der Meteorologie; 33:100 - 107

    Google Scholar 

  • Steadman R (1971) Indices of Windchill of Clothed Persons. Journal of Applied Meteorology; 10:674-683

    Article  Google Scholar 

  • Steadman R (1979) The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. Journal of Applied Meteorology 18:861-873

    Article  Google Scholar 

  • Verein Deutscher Ingenieure (VDI) (1998) VDI-Richtlinie 3787 Blatt 2 (Technische Regel) Ausgabe 1998-01 Umweltmeteorologie - Methoden zur human-biometeorologischen Bewertung von Klima- und Lufthygiene für die Stadt- und Regionalplanung - Teil 1: Klima.

    Google Scholar 

  • von Humboldt A (2004) Kosmos. Entwurf einer physischen Weltbeschreibung, vol Auflage: 1. Eichborn

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Bangladesh Meteorological Department for providing meteorological data. Furthermore, we would like to thank the German Research Foundation (DFG) for funding the Dhaka INNOVATE project within the priority programme 1233 “Megacities-Megachallenge – Informal Dynamics of Global Change”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Burkart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burkart, K., Endlicher, W. (2011). Human Bioclimate and Thermal Stress in the Megacity of Dhaka, Bangladesh: Application and Evaluation of Thermophysiological Indices. In: Krämer, A., Khan, M., Kraas, F. (eds) Health in Megacities and Urban Areas. Contributions to Statistics. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2733-0_10

Download citation

Publish with us

Policies and ethics