Skip to main content

Multivariate Stochastic Volatility Model with Cross Leverage

  • Conference paper
  • First Online:
Proceedings of COMPSTAT'2010
  • 5902 Accesses

Abstract

The Bayesian estimation method using Markov chain Monte Carlo is proposed for a multivariate stochastic volatility model that is a natural extension of the univariate stochastic volatility model with leverage, where we further incorporate cross leverage effects among stock returns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ASAI, M. and MCALEER, M. (2006): Asymmetric multivariate stochastic volatility. Econometric Reviews 25, 453–473.

    Article  MathSciNet  MATH  Google Scholar 

  • BROTO, C. and RUIZ, E. (2004): Estimation methods for stochastic volatility models: a survey. Journal of Economic Survey 18, 613–649.

    Article  Google Scholar 

  • CHAN, D., KOHN, R. and KIRBY, C. (2006): Multivariate stochastic volatility models with correlated errors. Econometric Reviews 25, 245–274.

    Article  MathSciNet  MATH  Google Scholar 

  • CHIB, S., NARDARI, F. and SHEPHARD, N. (2006): Analysis of high dimensional multivariate stochastic volatility models. Journal of Econometrics 134, 341–371.

    Article  MathSciNet  Google Scholar 

  • CHIB, S., OMORI, Y. and ASAI, M. (2009): Multivariate stochastic volatility. In T. G. Andersen, R. A. Davis, J. P. Kreiss, and T. Mikosch (Eds.), Handbook of Financial Time Series, pp.365–400. New York: Springer-Verlag.

    Chapter  Google Scholar 

  • DE JONG, P. and SHEPHARD, N. (1995): The simulation smoother for time series models. Biometrika 82, 339–350.

    Article  MathSciNet  MATH  Google Scholar 

  • DOORNIK, J. (2006): Ox: Object Oriented Matrix Programming. London: Timberlake Consultants Press.

    Google Scholar 

  • DURBIN, J. and KOOPMAN S.J. (2002): A simple and efficient simulation smoother for state space time series analysis. Biometrika 89, 603–616.

    Article  MathSciNet  MATH  Google Scholar 

  • ISHIHARA, T. and OMORI, Y. (2009): Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors. Discussion paper series, CIRJE-F-700, Faculty of Economics, University of Tokyo.

    Google Scholar 

  • JACQUIER, E., N. G. POLSON, and P. E. ROSSI (1999): Stochastic volatility: Univariate and multivariate extensions. CIRANO Working paper 99s–26, Montreal.

    Google Scholar 

  • KOOPMAN, S. J. (1993): Disturbance smoother for state space models. Biometrika 80, 117–126.

    Article  MathSciNet  MATH  Google Scholar 

  • LIESENFELD, R. and RICHARD, J.F. (2003): Univariate and multivariate stochastic volatility models: Estimation and diagnostics. Journal of Empirical Finance 10, 505–531.

    Article  Google Scholar 

  • LOPES, H.F. and CARVALHO C.M. (2007): Factor stochastic volatility with time varying loadings and Markov switching regimes. Journal of Statistical Planning and Inference 137 3082–3091.

    Article  MathSciNet  Google Scholar 

  • OMORI, Y. and WATANABE, T. (2008): Block sampler and posterior mode estimation for asymmetric stochastic volatility models. Computational Statistics and Data Analysis 52-6 2892–2910.

    Article  MathSciNet  Google Scholar 

  • PITT, M.K. and SHEPHARD, N. (1999): Time varying covariances: a factor stochastic volatility approach. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.), Bayesian Statistics, Volume 6, pp.547–570. Oxford: Oxford University Press.

    Google Scholar 

  • SHEPHARD, N. and PITT, M.K. (1997): Likelihood analysis of non-Gaussian measurement time series. Biometrika 84, 653–.

    Article  MathSciNet  MATH  Google Scholar 

  • SO, M.K.P. and CHOI, C.Y. (2009): A threshold factor multivariate stochastic volatility model. Journal of Forecasting 28-8, 712–735.

    Article  MathSciNet  Google Scholar 

  • TAKAHASHI, M., OMORI, Y. and WATANABE, T. (2009): Estimating stochastic volatility models using daily returns and realized volatility simultaneously. Computational Statistics and Data Analysis 53-6, 2404–2426.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Siddhartha Chib, Mike K P So and Boris Choy, for helpful comments and discussions. This work is supported by the Research Fellowship (DC1) from the Japan Society for the Promotion of Science and the Grants-in-Aid for Scientific Research (A) 21243018 from the Japanese Ministry of Education, Science, Sports, Culture and Technology. The computational results are generated using Ox (Doornik (2006)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Omori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishihara, T., Omori, Y. (2010). Multivariate Stochastic Volatility Model with Cross Leverage. In: Lechevallier, Y., Saporta, G. (eds) Proceedings of COMPSTAT'2010. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2604-3_29

Download citation

Publish with us

Policies and ethics