A Logical Approach to Context-Aware Databases

  • Davide Martinenghi
  • Riccardo Torlone
Conference paper


Context awareness is an enabling technology of ubiquitous computing aimed at utilizing the location, the time, and other properties that characterize the context of use to select the information that is most appropriate to final users. Although it is widely considered a fundamental ability of modern applications, current database technology does not provide any support to context awareness yet. In this paper, we propose a logical model and an abstract query language as a foundation for context-aware database management systems. The model is a natural extension of the relational model in which contexts are first class citizens and can be described at different levels of granularity. This guarantees a smooth implementation of the approach with current database technology. The query language is a conservative extension of relational algebra where special operators allow the specification of queries over contexts.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldauf M, Dustdar S, Rosenberg F (2007) A survey on context-aware systems. Int J Ad Hoc Ubiquitous Comput 2(4):263–277CrossRefGoogle Scholar
  2. 2.
    Birkhoff G (1967) Lattice theory. Colloquium publications, vol XXV, 3rd edn. American Mathematical Society, ProvidenceGoogle Scholar
  3. 3.
    Birkhoff G, MacLane S (1999) Algebra, 3rd edn. AMS Chelsea Publishing, ProvidenceGoogle Scholar
  4. 4.
    Bolchini C, Curino C, Quintarelli E, Schreiber FA, Tanca L (2007) A data-oriented survey of context models. SIGMOD Rec 36(4):19–26CrossRefGoogle Scholar
  5. 5.
    Bolchini C, Curino C, Orsi G, Quintarelli E, Rossato R, Schreiber FA, Tanca L (2009) And what can context do for data? Communications of the ACM, 52(11):136–140Google Scholar
  6. 6.
    Cabibbo L, Torlone R (1998) A logical approach to multidimensional databases. In: Proceedings of the 6th international conference on EDBT, Springer, Berlin/Heidelberg, pp 183–197Google Scholar
  7. 7.
    Chen Y, Suel T, Markowetz A (2006) Efficient query processing in geographic web search engines. In: Proceedings of the SIGMOD, ACM New York, NY, USA, pp 277–288Google Scholar
  8. 8.
    Coutaz J, Crowley JL, Dobso S, Garlan D (2009) Context is key. Commun ACM 48(3):49–53CrossRefGoogle Scholar
  9. 9.
    Roussos Y, Stavrakas Y, Pavlaki V (2005) Towards a context-aware relational model. In: Workshop on context representation and reasoning, Informal proceedingsGoogle Scholar
  10. 10.
    Stavrakas Y, Gergatsoulis M (2002) Multidimensional semistructured data: representing context-dependent information on the web. In: Proceedings of the CAiSE, Springer, Berlin/Heidelberg, pp 183–199Google Scholar
  11. 11.
    Stavrakas Y, Pristouris K, Efandis A, Sellis TK (2004) Implementing a query language for context-dependent semistructured data. In: Proceedings of the ADBIS, Springer, Berlin/Heidelberg, pp 173–188Google Scholar
  12. 12.
    Stefanidis K, Pitoura E, Vassiliadis P (2006) Modeling and storing context-aware preferences. In: Proceedings of ADBIS, Springer, Berlin/Heidelberg, pp 124–140Google Scholar
  13. 13.
    Stefanidis K, Pitoura E, Vassiliadis P (2007) Adding context to preferences. In: Proceedings of the ICDE, IEEE, Los Alamitos, CA (USA) pp 846–855Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Politecnico di MilanoMilanItaly
  2. 2.Università Roma TreRomeItaly

Personalised recommendations