Skip to main content
  • 627 Accesses

First of all, an attempt is made to classify each of the technologies examined using basic criteria which are of considerable importance for the rest of the analysis and significantly determine the priorities set in the subsequent analysis. These characteristics include (see Fig. 3.1): the regional scale of the markets, the predominant market form of the technology producers and the intensity of competition due to other technology options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For brevity, where the use is not ambiguous we use the term ‘technology’ to refer to new energy conversion technologies or energy-related technologies at the useful energy level.

  2. 2.

    The simultaneous application of the three approaches causes the interdependence of the results since the results of one approach are fed back into all other approaches.

  3. 3.

    Please note that the technology life cycle also includes the diffusion phase.

  4. 4.

    For further details, see Hinze and Schmoch (2004).

  5. 5.

    So it was assumed that the articles were written about one year before their publication in order to achieve a reference equivalent to the priority year of patents.

  6. 6.

    Where the meaning is unambiguous, we use the term component instead of innovation system component. Where ambiguity might occur we use technological component to denote a part of the technology under analysis and innovation system component to denote a part of the innovation system.

  7. 7.

    In Germany, e.g. universities, the Max-Planck Society.

  8. 8.

    In Germany, e.g. the Fraunhofer-Society, the Helmholtz-Society, AiF-Research Organizations.

  9. 9.

    In case the reader is more comfortable with a single approach rather than three different ones, the innovation systems analysis can be seen as the overarching approach under which the energy-economic analysis and the technology life cycle analysis can be subsumed. As the technology itself is a tangible (or intangible) artefact, it constitutes a key component in the technological innovation system. The energy-economic analysis investigates current and future properties of the technology as one component of the innovation system. The technology life cycle also – from a different angle and with a different conceptual background – analyses the properties of the technology as a component of the innovation system. Both the life cycle analysis and the energy-economic analysis can be seen as part of the technology innovation system analysis.

  10. 10.

    For an elaboration of system functions, see Hekkert, Suurs, Kuhlmann, and Smits, (2006): Functions of Innovation Systems: A new approach for analysing technological change; in: Technological Forecasting and Social Change (forthcoming).

References

  • Arrow, K. J. (1962). The Economic Implications of Learning by Doing, Review of Economic Studies, 29(3) June, 155–173.

    Google Scholar 

  • Baunetz-Online. (2005). des Zentrums für Umweltbewusstes Bauen e.V. Kassel: Was ist ein Niedrigenergiehaus? (http://www.baunetz.de)

  • Bühring, A., Leuchtner, J., Krug, P., & Schüle, R. (2004). Marktpotenzial für Passivhäuser und 3-Liter-Häuser. Fraunhofer Institut Solare Energiesysteme (ISE), Büro für Solarmarketing, Energieagentur Regio Freiburg.

    Google Scholar 

  • Callon, M. (2001). From science as an economic activity to socioeconomics of scientific research: The dynamics of emergent and consolidated techno-economic networks. In P. Mirowski (Ed.), Science bought and sold: Essays in the economics of science. Chicago: The University of Chicago Press.

    Google Scholar 

  • Carlsson, B., Jacobsson, S., Holmén, M., & Rickne, A. (2002). Innovation systems: analytical and methodological issues; in Research Policy 31 (2002), pp. 233–245.

    Google Scholar 

  • Chief Scientific Adviser’s Energy Research Review Group. (2005). Recommendations to Inform the Performance and Innovation Unit’s Energy Policy Review. Report of the Group. London: UK Office of Science and Technology.

    Google Scholar 

  • Christensen, C. (1997). The Innovators Dilemma. Cambridge: Harvard University Press.

    Google Scholar 

  • Committee on Prospective Benefits of DOE’s Energy Efficiency and Fossil Fuel Energy R&D Programs. (2005). Prospective Evaluation of the Applied Energy Research and the Development at DOE (Phase one) – A first look forward. National Research Council. The National Academies Press, Washington D.C. www.nap.edu

  • Cordis. (2005). Euroabstracts 4/05: Assessing the Potential of CO2 Capture and Storage (http://aoi.cordis.lu).

  • Cremer, C. (2005). Integrating Regional Aspects in Modelling of Electricity Generation – The Example of CO2 Capture and Storage. Zurich: Dissertation-ETH.

    Google Scholar 

  • Dosi, G. (1988). Sources, procedures and micro-economic effects of innovation. Journal of Economic Literature, XXVI, 1120–71.

    Google Scholar 

  • Dreher, C. (1997). Technologiepolitik und Technikdiffusion. Baden-Baden: Nomos.

    Google Scholar 

  • Dreher, C., Frietsch, R., Hemer, J., & Schmoch; U. (2006). Die Beschleunigung von Innovationszyklen und die Rolle der Fraunhofer-Gesellschaft. In: Hans-Jörg Bullinger (Hrsg.); Fokus Innovation - Kräfte bündeln - Prozesse beschleunigen. 275–306. München/Wien: Carl Hanser Verlag.

    Google Scholar 

  • Edler, J. (2006). Public action to spur innovation via demand (working title). In P. Smits, S. Kuhlmann, P. Shpaira (Eds.), The Co-Evolution of Innovation Policy – Innovation Policy Dynamics, Systems, and Governance (forthcoming).

    Google Scholar 

  • Edquist, C. (1997). Systems of Innovation Technologies, Institutions and Organisations. London/Washington: Printer.

    Google Scholar 

  • Enquête-Kommission des Deutschen Bundestages “Nachhaltige Energieversorgung unter den Bedingungen der Globalisierung und der Liberalisierung". (2002). Endbericht und Einzelberichte, Drucksache des Deutschen Bundestages 14/9400 vom 07.07.2002, Bundesanzeiger Verlagsgesellschaft, Berlin.

    Google Scholar 

  • EWI/Prognos. (2005). Energiereport IV. Die Entwicklung der Energiemärkte bis zum Jahre 2030. Energiewirtschaftliche Referenzprognose. Köln/Basel: Prognos AG.

    Google Scholar 

  • Feist, W. (2005). Was ist ein Passivhaus? (Passivhaus Institut http://www.passiv.de) sowie http://home.t-online.de/home/friedl.werner/passiv/passiv1.thtm

  • Fischedick, M., & Nitsch, J. (2002). Langfristszenarien für eine nachhaltige Energienutzung in Deutschland. Umweltbundesamt Berlin (2002).

    Google Scholar 

  • Fraunhofer ISI. (1998). Zwischenbilanz zur rationellen Energienutzung bei Thermoprozessanlagen, insbesondere Industrieöfen. Karlsruhe.

    Google Scholar 

  • Fraunhofer-ISI, FfE (Forschungsstelle für Energiewirtschaft e.V.) (2003). Möglichkeiten, Potenziale, Hemmnisse und Instrumente zur Senkung des Energieverbrauchs branchenübergreifender Techniken in den Bereichen Industrie und Kleinverbrauch. Karlsruhe: Fraunhofer ISI.

    Google Scholar 

  • Geiger, B., Nickel, M., & Wittke, F. (2005). Energieverbrauch in Deutschland, BWK Bd. 57 2005 Nr. ½

    Google Scholar 

  • Gold, B. (1981). Technological diffusion in industry: Research needs and shortcomings. Journal of Industrial Economics, XXIX(3), 505–516.

    Google Scholar 

  • Grupp, H. (1998). Foundations of the Economics of Innovation – Theory, Measurement and Practice. Celtenham/Northhampton: Edward Elgar.

    Google Scholar 

  • Hekkert. M. P., Suurs, R. A. A., Kuhlmann, S., & Smits, R. E. H. M. (2006). Functions of Innovation Systems: A new approach for analysing technological change. In Technological Forecasting and Social Change (forthcoming).

    Google Scholar 

  • Hinze, S., & Schmoch, U. (2004). Opening the black box. Analytical approaches and their impact on the outcome of statistical patent analyses. In H. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of Quantative Science and Technology Research. The Use of Publication and Patent Statistics in Studies of the R&D System, 215–235. Dordrecht/Norwell/New York/London: Kluwer.

    Google Scholar 

  • International Energy Agency IEA. (2004). Prospects for CO2 Capture and Storage. Paris: OECD.

    Google Scholar 

  • International Energy Agency IEA. (2005). CO 2 Emissions from Fuel Combustion 1971–2003. Paris: OECD.

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change. (2005). Special Report Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kleemann, M. et al. (2000). Die Entwicklung des Wärmemarktes für den Gebäudesektor bis 2050. Schriften des Forschungszentrums Jülich, Reihe Umwelt, Band 23

    Google Scholar 

  • Krewitt, W., Pehnt, M., Fischedick, M., & Temming, H. (2004): Brennstoffzellen in der Kraft-Wärme-Kopplung-Ökobilanzen, Szenarien, Marktpotenziale. Berlin 2004 (in Energy Policy-Article in Press (Science Direct): Krewitt, W., J. Nitsch, M. Fischedick, M. Pehnt, H. Temming: Market Perspectives of stationary fuel cells in a sustainable energy supply system-long-term scenarios for Germany)

    Google Scholar 

  • Meyer-Krahmer, F., & Dreher, C. (2004). Neuere Betrachtungen zu Technikzyklen und Implikationen für die Fraunhofer Gesellschaft, In: Spath, Dieter (ed.). Forschungs- und Technologiemanagement: Potentiale nutzen - Zukunft gestalten, Festschrift für Prof. H-J. Bullinger zum 60.ten Geburtstag. 27–35. München/Wien: Hanser Verlag.

    Google Scholar 

  • Pehnt, M., & Traube, K. (2004). Zwischen Euphorie und Ernüchterung. Stand und mittelfristige Perspektiven stationärer Brennstoffzellen. Berlin: Bundesverband Kraft-Wärme-Kopplung.

    Google Scholar 

  • Radgen, P. (ed.), (1998). Zwischenbilanz zur rationellen Energienutzung bei Thermoprozeβanlagen, insbesondere Industrieöfen. Karlsruhe: Fraunhofer ISI.

    Google Scholar 

  • Radgen, P., & Jochem, E. (Hrsg.). (1999). Zwischenbilanz zur rationellen Energienutzung bei Thermoprozeßanlagen, insbesondere Industrieöfen. Abschlußbericht : Zusätzlich mit CD-ROM (Inhalt: Literatur-, Patent-, Förderdatenbank Industrieöfen sowie vollständiger Abschlußbericht als PDF-Datei für adobe Acrobat Reader). Karlsruhe, 1998

    Google Scholar 

  • Radgen, P., Cremer, C., & Gerling, P., et al. (2005). Assessment of methods for CO2 capture and storage (Summary). Karlsruhe, Fraunhofer ISI.

    Google Scholar 

  • RWE. (2006). http://www.rwe.com.

  • Schibany, A., Edler, J., Jörg, L., Nones, B, Schmidmayer, J.,Warta, K., & Sheikh, S. (2005). Evaluierung der Christian Doppler Gesellschaft. Graz: Johaneum Research.

    Google Scholar 

  • Schmid, Ch. (2003). Energiequerschnittstechniken – Einsparpotentiale, Hemmnisse und Maßnahmen zu ihrer Erschließung. In: Rationelle Energienutzung in der Industrie – ein Beitrag zum Klimaschutz. Düsseldorf: VDI-Verlag.

    Google Scholar 

  • Sundermann, C. (1999). Constructive Technology Assessment, in: Stephan Bröchler, Georg Simonis, Karsten Sundermann (Hg.): Handbuch Technikfolgenabschätzung, Berlin 1999, edition sigma, S. 119–128

    Google Scholar 

  • VDEW. (2006). Stromwirtschaft nutzt vielfältigen Energiemix (www.strom.de).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard Jochem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Physica-Verlag Heidelberg

About this chapter

Cite this chapter

Jochem, E. (2009). The Conceptual Approach. In: Jochem, E. (eds) Improving the Efficiency of R&D and the Market Diffusion of Energy Technologies. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2154-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-2154-3_3

  • Published:

  • Publisher Name: Physica-Verlag HD

  • Print ISBN: 978-3-7908-2153-6

  • Online ISBN: 978-3-7908-2154-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics