An Alternative Modeling Approach for an Integrated Simulation and Optimization of a Class of Production Networks

  • Armin Fügenschuh
  • Simone Göttlich
  • Michael Herty

Abstract

We present a new modeling approach for production networks, which can be used for both simulation and optimization. It makes use of only a few general assumptions, such that it is applicable to a variety of problems. We survey the underlying fundamentals, derive a basic model based on partial differential equations and show its relation to linear mixed-integer programming. The mixed-integer model allows for simulation and optimization of dynamic time dependent production processes, and can be solved using standard software. Computational results are presented along a realworld industrial case study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armbruster D, de Beer C, Freitag M, Jagalski T, Ringhofer C (2005) Autonomous Control of Production Networks using a Pheromone Approach. Preprint, submitted to Physica.Google Scholar
  2. 2.
    Armbruster D, Degond P, Ringhofer C (2006) A Model for the Dynamics of Large Queuing Networks and Supply Chains. SIAM Journal of Applied Mathematics 66: 896–920.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baumol WJ (1970) Economic Dynamics, 3rd edition. Macmillan, New York.Google Scholar
  4. 4.
    Bixby RE, Simchi-Levi D, Martin A, Zimmermann U (2004) Mathematics in the Supply Chain. Oberwolfach Reports 1(2): 963–1036.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Forrester JW (1964) Industrial Dynamics, 3rd print. MIT Press, Massachusetts.Google Scholar
  6. 6.
    Fügenschuh A, Göttlich S, Herty M, Klar A, Martin A (2006), A Mixed-Integer Programming Approach for the Optimization of Continuous Models in Supply Chain Management, submitted to M3AS.Google Scholar
  7. 7.
    Fügenschuh A, Herty M, Klar A, Martin A (2006), Combinatorial and Continuous Models for the Optimization of Traffic Flows on Networks. SIAM Journal of Optimization 16(4): 1155–1176.MATHCrossRefGoogle Scholar
  8. 8.
    Fügenschuh A, Martin A (2005), Computational Integer Programming and Cutting Planes. In: K. Aardal, G. Nemhauser, R. Weissmantel (eds.), “Handbook on Discrete Optimization”, Series “Handbooks in Operations Research and Management Science”. Elsevier, 69–122.Google Scholar
  9. 9.
    Göttlich S, Herty M, Klar A (2005) Network models for supply chains. Communications in Mathematical Sciences (CMS) 3(4): 545–559.MATHGoogle Scholar
  10. 10.
    Göttlich S, Herty M, Klar A (2006) Modelling and optimization of supply chains on complex networks. Communications in Mathematical Sciences (CMS) 4(2): 315–330.Google Scholar
  11. 11.
    Günther HO, Mattfeld DC, Suhl L (Eds) (2005) Supply Chain Management und Logistik-Optimierung, Simulation, Decision Support. Physica-Verlag, Heidelberg.Google Scholar
  12. 12.
    Günther HO, van Beek P (Eds.) (2003) Advanced Planning and Scheduling Solutions in Process Industry. Springer, Berlin.Google Scholar
  13. 13.
    Mattheij R.M.M, Rienstra S.W, ten Thije Boonkkamp J.H.M. (2005), Partial Differential Equations — Modeling, Analysis, Computation. SIAM Monographs on Mathematical Modeling and Computation. SIAM, Philadelphia.Google Scholar
  14. 14.
    Nemhauser G, Wolsey LA. (1999) Integer and Combinatorial Optimization. Wiley-Interscience.Google Scholar
  15. 15.
    ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451, USA. Information available at URL http://www.cplex.com.Google Scholar
  16. 16.
    Simchi-Levi D, Kaminsky P, Simchi-Levi E (2003) Managing the Supply Chain: the definitive guide for the business. McGraw-Hill, New York.Google Scholar
  17. 17.
    Wolsey L, Pochet Y (2006) Production Planning by Mixed Integer Programming. Springer Series in Operations Research and Financial Engineering. Springer, New York.MATHGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2007

Authors and Affiliations

  • Armin Fügenschuh
    • 1
  • Simone Göttlich
    • 2
  • Michael Herty
    • 2
  1. 1.TU DarmstadtDarmstadt
  2. 2.TU KaiserslauternKaiserslautern

Personalised recommendations