Abidi M.A., Gonzalez R.C. (eds.) (1992) Data Fusion in Robotics and Machine Intelligence. Academic Press, New York.
MATH
Google Scholar
Baral C., Kraus S., Minker J., Subrahmanian (1992) Combining knowledge bases consisting in first order theories. Computational Intelligence, 8 (1), 45–71.
Google Scholar
Benferhat S., Cayrol C., Dubois D., Lang J., Prade H. (1993) Inconsistency management and prioritized syntax-based entailment. Proc. of the 13th Inter. Joint Conf. on Artificial Intelligence (IJCAI’93), Chambéry, France, Aug. 28-Sept. 3, 640–645.
Google Scholar
Benferhat S., Dubois D., Prade H. (1995) How to infer from inconsistent beliefs without revising?. Proc. of the 14th Inter. Joint Conf. on Artificial Intelligence (IJCAI’95), Montréal, Canada, Aug. 20–25, 1449–1455.
Google Scholar
Boldrin L. (1995) A substructural connective for possibilistic logic In: Symbolic and Quantitative Approaches to Reasoning and Uncertainty (Proc. of Europ. Conf. ECSQARU’95) C. Froidevaux, J. Kohlas, eds.), Springer Verlag, Fribourg, 60–68.
CrossRef
Google Scholar
Boldrin L., Sossai C. (1995) An algebraic semantics for possibilistic logic. Proc of the 11th Conf. Uncertainty in Artifucial Intelligence (P. Besnard, S. Hank, eds.) Morgan Kaufmann, San Francisco, CA, 27–35.
Google Scholar
Cholvy F. (1992) A logical approach to multi-sources reasoning. In: Applied Logic Conference: Logic at Work, Amsterdam.
Google Scholar
Dubois D., Lang J., Prade H. (1987) Theorem proving under uncertainty — A possibility theory-based approach. Proc. of the 10th Inter. Joint Conf. on Artificial Intelligence, Milano, Italy, August, 984–986.
Google Scholar
Dubois D., Lang J., Prade H. (1992) Dealing with multi-source information in possibilistic logic. Proc. of the 10th Europ. Conf. on Artificial Intelligence (ECAI’92) Vienna, Austria, Aug. 3–7, 38–42.
Google Scholar
Dubois D., Lang J., Prade H. (1994a) Automated reasoning using possibilistic logic: Semantics, belief revision and variable certainty weights. IEEE Trans. on Knowledge and Data Engineering, 6 (1), 64–71.
CrossRef
Google Scholar
Dubois D., Lang J., Prade H. (1994b) Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming — Vol 3: Nonmonotonic Reasoning and Uncertain Reasoning (Dov M. Gabbay, C.J. Hogger, J.A. Robinson, D. Nute eds.), Oxford Univ. Press, 439–513.
Google Scholar
Dubois D., Prade H. (1988a) Possibility Theory — An Approach to Computerized Processing of Uncertainty. Plenum Press, New York.
MATH
CrossRef
Google Scholar
Dubois D., Prade H. (1988b) Representation and combination of uncertainty with belief functions and possibility. Computational Intelligence, 4, 244–264.
CrossRef
Google Scholar
Dubois D., Prade H. (1988e) Default reasoning and possibility theory. Artificial Intelligence, 35, 243–257.
MathSciNet
MATH
CrossRef
Google Scholar
Dubois D., Prade H. (1988d) On the combination of uncertain or imprecise pieces of information in rule-based systems. A discussion in a framework of possibility theory. Int. Journal of Approximate Reasoning, 2, 65–87.
Google Scholar
Dubois D., Prade H. (1990) Aggregation of possibility measures. In: Multiperson Decision Making Using Fuzzy Sets and Possibility Theory (J. Kacprzyk, M. Fedrizzi, eds. ), Kluwer Academic Publ., 55–63.
Google Scholar
Dubois D., Prade H. (1992) Combination of fuzzy information in the framework of possibility theory. In: Data Fusion in Robotics and Machine Intelligence ( M.A. Abidi, R.C. Gonzalez, eds.) Academic Press, New York, 481–505.
Google Scholar
Dubois D., Prade H. (1994) Possibility theory and data fusion in poorly informed environments. Control Engineering Practice, 2 (5), 811–823.
CrossRef
Google Scholar
Dubois D., Prade H. (1996) Belief revision with uncertain inputs in the possibilistic setting. Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence (E. Horvitz, F. Jensen, eds.), Portland, Oregon, Aug. 1–4, 1996, 236–243
Google Scholar
Flamm J., Luisi T. (Eds.) (1992) Reliability Data and Analysis. Kluwer Academic Publ.
Google Scholar
Kelman A. (1996) Modèles flous pour l’agrégation de données et l’aide à la décision. Thèse de Doctorat, Université Paris 6, France.
Google Scholar
Matzkevich I., Abramson B. (1992) The topological fusion of Bayes nets. Proc. of the 8th Conf. on Uncertainty in Artificial Intelligence (D. Dubois, M.P. Wellman, B. D’Ambrosio, P. Smets, eds.), Stanford, CA, July 17–19, 191–198.
Google Scholar
Matzkevich I., Abramson B. (1993) Some complexity considerations in the combination of belief networks. Proc. of the 9th Conf. on Uncertainty in Artificial Intelligence (D. Heckerman, A. Mamdani, eds.), Washington, DC, July 9–11, 152–158.
Google Scholar
Shafer G. (1976) A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton, NJ.
Google Scholar
Shoham Y. (1988) Reasoning About Change — Time and Causation from the Standpoint of Artificial Intelligence. The MIT Press, Cambridge, MA.
Google Scholar
Williams M.A. (1996) Towards a practical approach to belief revision: Reason-based change. Proc. of the 5th Conf. on Knowledge Representation and Reasoning Principles (KR’96), Cambridge, MA, Nov. 1996.
Google Scholar
Yager R.R. (1987) On the Dempster-Shafer framework and new combination rules. Information Sciences, 41, 93–138.
MathSciNet
MATH
CrossRef
Google Scholar
Yager R. R. (1991) Non-monotonic set-theoritic operators. Fuzzy Sets and Systems 42, 173–190.
MathSciNet
MATH
CrossRef
Google Scholar
Zadeh L.A. (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.
MathSciNet
MATH
CrossRef
Google Scholar