Skip to main content

From Semantic to Syntactic Approaches to Information Combination in Possibilistic Logic

  • Chapter

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ,volume 12)

Abstract

This paper proposes syntactic combination rules for merging uncertain propositional knowledge bases provided by different sources of information, in the framework of possibilistic logic. These rules are the counterparts of combination rules which can be applied to the possibility distributions (defined on the set of possible worlds), which represent the semantics of each propositional knowledge base. Combination modes taking into account the levels of conflict, the relative reliability of the sources, or having reinforcement effects are considered.

Keywords

  • Belief Revision
  • Combination Rule
  • Possibility Distribution
  • Combination Mode
  • Possibilistic Logic

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7908-1889-5_9
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-7908-1889-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abidi M.A., Gonzalez R.C. (eds.) (1992) Data Fusion in Robotics and Machine Intelligence. Academic Press, New York.

    MATH  Google Scholar 

  • Baral C., Kraus S., Minker J., Subrahmanian (1992) Combining knowledge bases consisting in first order theories. Computational Intelligence, 8 (1), 45–71.

    Google Scholar 

  • Benferhat S., Cayrol C., Dubois D., Lang J., Prade H. (1993) Inconsistency management and prioritized syntax-based entailment. Proc. of the 13th Inter. Joint Conf. on Artificial Intelligence (IJCAI’93), Chambéry, France, Aug. 28-Sept. 3, 640–645.

    Google Scholar 

  • Benferhat S., Dubois D., Prade H. (1995) How to infer from inconsistent beliefs without revising?. Proc. of the 14th Inter. Joint Conf. on Artificial Intelligence (IJCAI’95), Montréal, Canada, Aug. 20–25, 1449–1455.

    Google Scholar 

  • Boldrin L. (1995) A substructural connective for possibilistic logic In: Symbolic and Quantitative Approaches to Reasoning and Uncertainty (Proc. of Europ. Conf. ECSQARU’95) C. Froidevaux, J. Kohlas, eds.), Springer Verlag, Fribourg, 60–68.

    CrossRef  Google Scholar 

  • Boldrin L., Sossai C. (1995) An algebraic semantics for possibilistic logic. Proc of the 11th Conf. Uncertainty in Artifucial Intelligence (P. Besnard, S. Hank, eds.) Morgan Kaufmann, San Francisco, CA, 27–35.

    Google Scholar 

  • Cholvy F. (1992) A logical approach to multi-sources reasoning. In: Applied Logic Conference: Logic at Work, Amsterdam.

    Google Scholar 

  • Dubois D., Lang J., Prade H. (1987) Theorem proving under uncertainty — A possibility theory-based approach. Proc. of the 10th Inter. Joint Conf. on Artificial Intelligence, Milano, Italy, August, 984–986.

    Google Scholar 

  • Dubois D., Lang J., Prade H. (1992) Dealing with multi-source information in possibilistic logic. Proc. of the 10th Europ. Conf. on Artificial Intelligence (ECAI’92) Vienna, Austria, Aug. 3–7, 38–42.

    Google Scholar 

  • Dubois D., Lang J., Prade H. (1994a) Automated reasoning using possibilistic logic: Semantics, belief revision and variable certainty weights. IEEE Trans. on Knowledge and Data Engineering, 6 (1), 64–71.

    CrossRef  Google Scholar 

  • Dubois D., Lang J., Prade H. (1994b) Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming — Vol 3: Nonmonotonic Reasoning and Uncertain Reasoning (Dov M. Gabbay, C.J. Hogger, J.A. Robinson, D. Nute eds.), Oxford Univ. Press, 439–513.

    Google Scholar 

  • Dubois D., Prade H. (1988a) Possibility Theory — An Approach to Computerized Processing of Uncertainty. Plenum Press, New York.

    MATH  CrossRef  Google Scholar 

  • Dubois D., Prade H. (1988b) Representation and combination of uncertainty with belief functions and possibility. Computational Intelligence, 4, 244–264.

    CrossRef  Google Scholar 

  • Dubois D., Prade H. (1988e) Default reasoning and possibility theory. Artificial Intelligence, 35, 243–257.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Dubois D., Prade H. (1988d) On the combination of uncertain or imprecise pieces of information in rule-based systems. A discussion in a framework of possibility theory. Int. Journal of Approximate Reasoning, 2, 65–87.

    Google Scholar 

  • Dubois D., Prade H. (1990) Aggregation of possibility measures. In: Multiperson Decision Making Using Fuzzy Sets and Possibility Theory (J. Kacprzyk, M. Fedrizzi, eds. ), Kluwer Academic Publ., 55–63.

    Google Scholar 

  • Dubois D., Prade H. (1992) Combination of fuzzy information in the framework of possibility theory. In: Data Fusion in Robotics and Machine Intelligence ( M.A. Abidi, R.C. Gonzalez, eds.) Academic Press, New York, 481–505.

    Google Scholar 

  • Dubois D., Prade H. (1994) Possibility theory and data fusion in poorly informed environments. Control Engineering Practice, 2 (5), 811–823.

    CrossRef  Google Scholar 

  • Dubois D., Prade H. (1996) Belief revision with uncertain inputs in the possibilistic setting. Proc. of the 12th Conf. on Uncertainty in Artificial Intelligence (E. Horvitz, F. Jensen, eds.), Portland, Oregon, Aug. 1–4, 1996, 236–243

    Google Scholar 

  • Flamm J., Luisi T. (Eds.) (1992) Reliability Data and Analysis. Kluwer Academic Publ.

    Google Scholar 

  • Kelman A. (1996) Modèles flous pour l’agrégation de données et l’aide à la décision. Thèse de Doctorat, Université Paris 6, France.

    Google Scholar 

  • Matzkevich I., Abramson B. (1992) The topological fusion of Bayes nets. Proc. of the 8th Conf. on Uncertainty in Artificial Intelligence (D. Dubois, M.P. Wellman, B. D’Ambrosio, P. Smets, eds.), Stanford, CA, July 17–19, 191–198.

    Google Scholar 

  • Matzkevich I., Abramson B. (1993) Some complexity considerations in the combination of belief networks. Proc. of the 9th Conf. on Uncertainty in Artificial Intelligence (D. Heckerman, A. Mamdani, eds.), Washington, DC, July 9–11, 152–158.

    Google Scholar 

  • Shafer G. (1976) A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Shoham Y. (1988) Reasoning About Change — Time and Causation from the Standpoint of Artificial Intelligence. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Williams M.A. (1996) Towards a practical approach to belief revision: Reason-based change. Proc. of the 5th Conf. on Knowledge Representation and Reasoning Principles (KR’96), Cambridge, MA, Nov. 1996.

    Google Scholar 

  • Yager R.R. (1987) On the Dempster-Shafer framework and new combination rules. Information Sciences, 41, 93–138.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Yager R. R. (1991) Non-monotonic set-theoritic operators. Fuzzy Sets and Systems 42, 173–190.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Zadeh L.A. (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benferhat, S., Dubois, D., Prade, H. (1998). From Semantic to Syntactic Approaches to Information Combination in Possibilistic Logic. In: Bouchon-Meunier, B. (eds) Aggregation and Fusion of Imperfect Information. Studies in Fuzziness and Soft Computing, vol 12. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1889-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1889-5_9

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-11073-7

  • Online ISBN: 978-3-7908-1889-5

  • eBook Packages: Springer Book Archive