Skip to main content

Inverse Fuzzy Model Based Predictive Control

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 16))

Abstract

Conventional fuzzy control is based on expert knowledge in the form of fuzzy if-then rules. Practice shows, however, that it is often not possible to collect sufficient information to design a well-performing fuzzy controller. Human control skills are generally difficult to verbalize, since the operator’s control strategy is often based on the simultaneous use of various control principles, combining feedforward, feedback, and predictive strategies in a complex, time-varying fashion. In such a case, the operator may not be able to explain why a particular control action is chosen. Moreover, the rules provided by different operators are often contradictory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babuška, R., J. Sousa and H.B. Verbruggen (1995). Model-based design of fuzzy control systems. In Proceedings Third European Congress on Intelligent Techniques and Soft Computing EUFIT’95, Aachen, Germany, pp. 837–841.

    Google Scholar 

  • Babuška, R. and H.B. Verbruggen (1995). Identification of composite linear models via fuzzy clustering. In Proceedings European Control Conference, Rome, Italy, pp. 1207–1212.

    Google Scholar 

  • Babuška, R. and H.B. Verbruggen (1996). An overview of fuzzy modeling for control. Control Engineering Practice4(11), 1593–1606.

    Article  Google Scholar 

  • Braae, M. and D.A. Rutherford (1979). Theoretical and linguistic aspects of the fuzzy logic controller. Automatica15, 553–577.

    Article  MATH  Google Scholar 

  • Clarke, D.W., C. Mohtadi and P.S. Tuffs (1987). Generalised predictive control, part 1: The basic algorithm, part 2: Extensions and interpretations. Automatica 23(2), 137–160.

    Article  MATH  Google Scholar 

  • Driankov, D., H. Hellendoorn and M. Reinfrank (1993). An Introduction to Fuzzy Control Springer, Berlin.

    Book  MATH  Google Scholar 

  • Economou, C.G., M. Morari and B.O. Palsson (1986). Internal model control. 5. Extension to nonlinear systems. Ind. Eng. Chem. Process Des. Dev.25, 403–411.

    Article  Google Scholar 

  • Harris, C.J., C.G. Moore and M. Brown (1993). Intelligent Control, Aspects of Fuzzy Logic and Neural Nets. Singapore: World Scientific.

    MATH  Google Scholar 

  • Kaymak, U. and R. Babuška (1995). Compatible cluster merging for fuzzy modeling. In Proceedings FUZZ-IEEE/IFES ’95, Yokohama, Japan, pp. 897–904.

    Google Scholar 

  • Lawler, E.L. and E.D. Wood (1966). Branch-and-bound methods: A survey. Journal of Operations Research14, 699–719.

    Article  MathSciNet  MATH  Google Scholar 

  • Mitten, L.G. (1970). Branch-and-bound methods: General formulation and properties. Journal of Operations Research18, 24–34.

    Article  MathSciNet  MATH  Google Scholar 

  • Paassen, van A.H.C. and P.J. Lute (1993). Energy saving through controlled ventilation windows. In 3rd European Conference on Architecture, Florence, Italy.

    Google Scholar 

  • Pedrycz, W. (1993). Fuzzy Control and Fuzzy Systems (second, extended, edition). John Willey and Sons, New York.

    Google Scholar 

  • Raymond, C, S. Boverie and A Titli (1995). Fuzzy multivariable control design from the fuzzy system model. In Proceedings Sixth IF S A World Congress, Sao Paulo, Brazil.

    Google Scholar 

  • Soeterboek, R. (1992). Predictive Control: A Unified Approach. New York, USA: Prentice Hall.

    MATH  Google Scholar 

  • Verhaegen, M. and P. Dewilde (1992). Subspace model identification. Part I: the output-error state space model identification class of algorithms. International Journal of Control56, 1187–1210.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, L.-X. (1994). Adaptive Fuzzy Systems and Control, Design and Stability Analysis. New Jersey: Prentice Hall.

    Google Scholar 

  • Yoshinari, Y., W. Pedrycz and K. Hirota (1993). Construction of fuzzy models through clustering techniques. Fuzzy Sets and Systems54, 157–165.

    Article  MathSciNet  Google Scholar 

  • Zhao, J., V. Wertz and R. Gorez (1994). A fuzzy clustering method for the identification of fuzzy models for dynamical systems. In 9th IEEE International Symposium on Intelligent Control, Columbus, Ohio, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Babuška, R., Sousa, J.M., Verbruggen, H.B. (1998). Inverse Fuzzy Model Based Predictive Control. In: Driankov, D., Palm, R. (eds) Advances in Fuzzy Control. Studies in Fuzziness and Soft Computing, vol 16. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1886-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1886-4_6

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-11053-9

  • Online ISBN: 978-3-7908-1886-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics