Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 45))

Abstract

Recent developments in image classification have focused on efficient preprocessing of visual data to improve the performances of neural networks and other learning algorithms when dealing with content-based classification tasks. Given the high dimensionality and redundancy of visual data, the primary goal of preprocessing is to transfer the original data to a low-dimensional representation that preserves the information relevant for the classification. This contribution reviews modern preprocessing (dimension-reduction) techniques and discusses their advantages and disadvantages. The performance of the techniques is assessed on a difficult painting-classification task that requires painter-specific features to be retained in the low-dimensional representation. Evaluation of the results shows that domain-specific knowledge provides a rough albeit indispensable guideline for determining the appropriate type of preprocessing. Furthermore, the evaluation shows that neural-network techniques are most suitable for executing and fine-tuning the preprocessing and subsequent classification. It is argued that further improvements can be gained by the use of a content-based attentional selection procedure. Our conclusion is that preprocessing should be tailored to the task at hand by combining domain knowledge with neural-network techniques, and that within fifty years the visual signature of painters is as recognizable as is any handwritten signature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnsley, M.F. (1992). Fractals Everywhere. San Diego: Academic Press.

    Google Scholar 

  2. Beck, J. (1982). Textural segmentation. In J. Beck (Ed.), Organization and Representation in Perception (pp. 285–317). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  3. Biederman, I., Rabinowitz, J.C., Glass, A.L., and Stacey, E.W., Jr. (1974). On the information extracted from a glance at a scene. Journal of Experimental Psychology, 103, 597–600.

    Article  Google Scholar 

  4. Fourier, J. (1888). Theorie Analytique de la Chaleur. Gauthiers-Villars.

    Google Scholar 

  5. Freeman, W.T. and Adelson, E.H. (1991). The design and use of steerable filters. IEEE Transactions in Pattern Analysis and Machine Intelligence, 13, 891–906.

    Article  Google Scholar 

  6. Funt, B.V. and Finlayson, G.D. (1995). Color constant color indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 522–528.

    Article  Google Scholar 

  7. Gage, J. (1999). Colour and Meaning. Art, Science and Symbolism. London: Thames and Hudson.

    Google Scholar 

  8. Gonzalez, R.C. and Woods, R.E. (1993). Digital Image Processing. Reading, MA: Addison-Wesley Publishing Company.

    Google Scholar 

  9. Herik, H.J. van den (1995). How to model thoughts and actions. Nieuw Archiefvoor Wiskunde, Part IV, 13 (3), 363–380.

    MATH  Google Scholar 

  10. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10, 626–634.

    Article  Google Scholar 

  11. Hyvarinen, A. and Oja, E. (1999). Independent Component Analysis: A Tutorial. http://www.cis.hut.fi/projects/ica.

    Google Scholar 

  12. Jain, A.K. (1989). Fundamentals of Digital Image Processing. Prentice Hall.

    MATH  Google Scholar 

  13. Julesz, B. and Bergen, J.R. (1983). Textons, the fundamental elements in preattentive vision and perception of textures. The Bell Systems Technical Journal, 62, 1619–1645.

    Google Scholar 

  14. Koenderink, J.J. and Doom, A.J. Van (1988).The basic geometry of a vision system. In R. Trappl (Ed.), Cybernetics and Systems’88 (pp. 481–485). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  15. Lu, N. (1997). Fractal Imaging. San Diego: Academic Press.

    MATH  Google Scholar 

  16. Mandelbrot, B.B. (1977). The Fractal Geometry of Nature. W.H. Freeman and Company.

    Google Scholar 

  17. Mel, B. (1997). SEEMORE: Combining color, shape, and texture histogramming in a neurally-inspired approach to visual object recognition. Neural Computation, 9, 111–804.

    Article  Google Scholar 

  18. Parker, J.R. (1997). Algorithms for Image Processing and Computer Vision. New York: John Wiley & Sons, Inc.

    Google Scholar 

  19. Phillips, D. (1995). How do forgers deceive art critics? In R. Gregory, J. Harris, P. Heard, and D. Rose (Eds.), The Artful Eye (pp. 372–388). Oxford: Oxford University Press.

    Google Scholar 

  20. Pioch, N. (1996). The Webmuseum, Paris, http://sunsite.doc.ic.ac.uk/wm/

    Google Scholar 

  21. Postma, E.O., Herik, H.J. van den, and Hudson, P.T.W. (1997a). Image Recognition by Brains and Machines. In S. Amari and N. Kasabov (Eds), Brain-like Computing and Intelligent Information Systems (pp. 25–47). Singapore: Springer-Verlag.

    Google Scholar 

  22. Postma, E.O., Herik, HJ. van den, and Hudson, P.T.W. (1997b). SCAN: A scalable model of covert attention. Neural Networks, 10, 993–1015.

    Article  Google Scholar 

  23. Postma, E.O, Herik, H.J. van den, and Hudson, P.T.W. (1998). Spatio-chromatic Features for Image Recognition. In H. Prade (Ed.), Proceedings of the European Conference on Artificial Intelligence, ECAIV8 (pp. 637–641). John Wiley & Sons, Chichester.

    Google Scholar 

  24. Rao, R.P.N, and Ballard, D.H. (1995). An active vision architecture based on iconic representations. Artificial Intelligence, 78, 461–505.

    Article  Google Scholar 

  25. Reed, R.D. and Marks II, R.J. (1999). Neural Smithing. Supervised Learning in Feedforward Artificial Neural Networks. Cambridge, MA: MIT Press.

    Google Scholar 

  26. Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning internal representations by error propagation. In D.E. Rumelhart and J.L. McClelland (Eds.), Parallel Distributed Processing: Explorations in the microstructure of cognition, vol. I: Foundations, (pp.318–362). Cambridge, MA: MIT Press.

    Google Scholar 

  27. Russ, J.C. (1990). Surface characterisation: Fractal Dimensions, Hurst Coefficients, and Frequency Transforms. Journal of Computer Assisted Microscopy, 2, 249–257.

    Google Scholar 

  28. Schiele, B. and Crowley, J.L. (1996). Object recognition using multidimensional receptive field histograms. In B. Buxton and R. Cipolla (Eds.) Proceedings of the ECCVV6, 610–619. Berlin: Springer-Verlag.

    Google Scholar 

  29. Schmid, C. and Mohr, R. (1997). Local gray value invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 530–534.

    Article  Google Scholar 

  30. Swain, M. and Ballard, D.H. (1991). Color indexing. International Journal of Computer Vision, 7, 11–32.

    Article  Google Scholar 

  31. Taylor, R.P., Micolich, A.P., and Jonas, D. (1999). Fractal analysis of Pollock’s drip paintings. Nature, 399,422.

    Article  Google Scholar 

  32. Treisman, A.M. (1982). Perceptual grouping and attention in visual search for features and objects. Journal of Experimental Psychology: Human Perception and Performance, 8 (2), 194–214.

    Article  Google Scholar 

  33. Weiss, S. M. and Kulikowski, C. A. (1991). Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning and expert systems. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  34. Wetering, E. van de (1997). Rembrandt: The painter at work. Amsterdam: Amsterdam University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van den Herik, H.J., Postma, E.O. (2000). Discovering the Visual Signature of Painters. In: Kasabov, N. (eds) Future Directions for Intelligent Systems and Information Sciences. Studies in Fuzziness and Soft Computing, vol 45. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1856-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1856-7_7

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2470-4

  • Online ISBN: 978-3-7908-1856-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics