Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 45))

Abstract

This chapter outlines the research, development and perspectives of quantum neural networks - a burgeoning new field which integrates classical neurocomputing with quantum computation [1]. It is argued that the study of quantum neural networks may give us both new understanding of brain function as well as unprecedented possibilities in creating new systems for information processing, including solving classically intractable problems, associative memory with exponential capacity and possibly overcoming the limitations posed by the Church-Turing thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feynman, R. (1986) Quantum mechanical computers. Foundations of Physics, vol. 16, pp.507–531.

    Article  MathSciNet  Google Scholar 

  2. Penrose, R. (1994) Shadows of the Mind. A search for the missing science of consciousness. Oxford University Press, New York, Oxford.

    Google Scholar 

  3. Hameroff, S. and Rasmussen, S. (1990) Microtubule Automata: Sub-Neural Information Processing in Biological Neural Networks. In: Theoretical Aspects of Neurocomputing, M. Novak and E. Pelikan (Eds.), World Scientific, Singapore, pp.3–12.

    Google Scholar 

  4. Brooks, M. (Ed.) (1999) Quantum computing and communications, Springer-Verlag, Berlin/Heidelberg.

    Book  MATH  Google Scholar 

  5. Deutsch, D. (1985) Quantum theory, the Church-Turing principle and the universal quantum computer, Proceedings of the Royal Society of London, A400, pp.97–117.

    Article  MathSciNet  MATH  Google Scholar 

  6. Everett, H. (1957) “Relative state” formulation of quantum mechanics. Review of modern physics, vol.29, pp.454–462.

    Article  MathSciNet  Google Scholar 

  7. Dirac, P.A.M. (1958) The principles of quantum mechanics. Oxford, Claredon Press.

    MATH  Google Scholar 

  8. Domany, E., van Hemmen, J.L., and Schulten, K. (Eds.) (1992) Models of neural networks, Springer-Verlag. Berlin, Heidelberg, New York.

    MATH  Google Scholar 

  9. Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences USA, vol.79, pp.2554–2558.

    Article  MathSciNet  Google Scholar 

  10. Feynman, R.P., Leighton, R.B., and Sands, M. (1965) The Feynman Lectures on Physics, vol. 3, Addison-Wesley Publishing Company, Massachusetts.

    Google Scholar 

  11. Vedral, V., Plenio, M.B., Rippin, M.A., and Knight, P.L. (1997) Quantifying Entanglement. Physical Review Letters, vol. 78 no. 12, pp. 2275–2279.

    Article  MathSciNet  MATH  Google Scholar 

  12. Jozsa, R. (1997) Entanglement and Quantum Computation. Geometric Issues in the Foundations of Science, S. Hugget, L. Mason, K.P. Tod, T. Tsou and N.M.J. Woodhouse (Eds.), Oxford University Press.

    Google Scholar 

  13. Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals. McGraw-Hill, New-York.

    MATH  Google Scholar 

  14. Perus, M. (1996) Neuro-Quantum parallelism in brain-mind and computers, Informatica, vol. 20, pp.173–183.

    Google Scholar 

  15. Haken, H. (1991) Synergetic computers for pattern recognition, and their control by attention parameter. In Neurocomputers and Attention II: connectionism and neurocomputers, V.I. Kryukov and A. Holden (Eds.), Manchester University Press, UK, pp 551–556.

    Google Scholar 

  16. Behrman, E.C., Niemel, J., Steck, J.E., and Skinner, S.R. (1996) A quantum dot neural network. Proceedings of the 4th Workshop on Physics of Computation, Boston, pp.22–24, November.

    Google Scholar 

  17. Behrman, E.C., Steck, J.E., and Skinner, S.R. (1999) A spatial quantum neural computer., Proceedings of the International Joint Conference on Neural Networks, to appear.

    Google Scholar 

  18. Goertzel, B. Quantum Neural Networks, http://goertzel/org/ben/quantnet.html

    Google Scholar 

  19. Chrisley, R.L. (1995) Quantum learning. In Pylkkänen, P., and Pylkkö, P. (Eds.) New directions in cognitive science: Proceedings of the international symposium, Saariselka, 4–9 August, Lapland, Finland, pp.77–89, Helsinki, Finnish Association of Artificial Intelligence

    Google Scholar 

  20. Chrisley, R.L. (1997) Learning in Non-superpositional Quantum Neurocomputers, In Pylkkänen, P., and Pylkkö, P. (Eds.) Brain, Mind and Physics. IOS Press, Amsterdam, pp 126–139.

    Google Scholar 

  21. Deutsch, D. (1997) The fabric of reality. Alen Lane: The Pengu in Press.

    Google Scholar 

  22. Bishop, C.H. (1995) Neural networks for pattern recognition, Clarendon Press, Oxford.

    Google Scholar 

  23. Cotrell, G.W., Munro, P., and Zipser D. (1985) “Learning internal representation from gray-scale images: An example of extensional programming”, Proceedings of the Ninth Annual Conference of the Cognitive Science Society, Irvine, CS.

    Google Scholar 

  24. Gasquel, J.-D., Moobed, B., and Weinfeld, M. (1994) “An internal mechanism for detecting parasite attractors in a Hopfield network”, Neural Computation, vol.6, pp.902–915.

    Article  Google Scholar 

  25. Schwenk, H., and Milgram, M. (1994) Structured diabolo-networks for hand-written character recognition. International Conference on Artificial Neural Networks, 2, Sorrento, Italy, pp.985–988.

    Google Scholar 

  26. Ezhov, A.A., and Vvedensky, V.L. (1996) Object generation with neural networks (when spurious memories are useful), Neural Networks, vol. 9, pp. 1491–1495.

    Article  MATH  Google Scholar 

  27. Müller, B., Reinhardt, J., and Strickland, M.T. (1995) Neural Networks, Springer-Verlag, Berlin, Heidelberg.

    Book  MATH  Google Scholar 

  28. Ezhov, A.A., Kalambet, Yu.A., and Knizhnikova, L.A. (1990) “Neural networks: general properties and particular applications”. In: Neural Networks: Theory and Architectures. V.I. Kryukov and A. Holden (Eds.) , Manchester University Press, Manchester, UK, pp.39–47.

    Google Scholar 

  29. Ventura, D. and Martinez, T. (1999) “Initializing the amplitude distribution of a quantum state”, submitted to Foundations of Physics Letters.

    Google Scholar 

  30. Ventura, D. and Martinez, T. (1998) Quantum associative memory with exponential capacity, Proceedings of the International Joint Conference on Neural Networks, pp.509–513.

    Google Scholar 

  31. Milburn, G.J. (1998) The Feynman Processor, Perseus Books, Reading MA.

    MATH  Google Scholar 

  32. Menneer, T. and Narayanan, A. (1995) Quantum-inspired neural networks. Technical report R329, Department of Computer Science, University of Exeter, UK

    Google Scholar 

  33. Ventura, D. and Martinez, T. (1999) A quantum associative memory based on Grover’s algorithm. Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms, pp.22–27.

    Google Scholar 

  34. Ventura, D. (1998) Artificial associative memory using quantum processes. Proceedings of the International Conference on Computational Intelligence and Neuroscience, vol.2, pp.218–221.

    Google Scholar 

  35. Ventura, D. and Martinez, T.(1999) Quantum associative memory. Information Sciences, in press.

    Google Scholar 

  36. Grover, L.K. (1996) A fast quantum mechanical algorithm for database search. Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, pp.212–219.

    Google Scholar 

  37. Ezhov, A.A., Nifanova, A.V., and Ventura, D. (1999) Quantum Associative Memory with Distributed Queries, in preparation.

    Google Scholar 

  38. Gruska, J. (1999) Quantum computing, McGraw-Hill, UK.

    Google Scholar 

  39. Cutting, D.(1999) Would quantum neural networks be subject to the decidability constraints of the Church-Turing thesis? Neural Network World, N.l-2, pp.163–168

    Google Scholar 

  40. Gershenfeld, N.A. and Chuang, I.L. (1996) Bulk Spin Resonance Quantum Computation. Science, 257 (January 17), p.350.

    MathSciNet  Google Scholar 

  41. Knill, E. , Laflamme, R., Martinez, R. and Tseng, C.-H. (1999) A Cat-State Benchmark on a Seven Bit Quantum Computer, Los Alamos pre-print archive, quant-ph/9908051

    Google Scholar 

  42. Shor, P.W. (1997) Polynomial-time algorithm for prime factorization and discrete lpgarithms on a quantum computer, SIAM Journal on Computing, vol.26, pp. 1484–1509.

    Article  MathSciNet  MATH  Google Scholar 

  43. Perus, M. (1997) Neural networks, quantum systems and consciousness. Science Tribune, Article - May. http://www.tribunes.com/tribune/art97/perul.htm

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ezhov, A.A., Ventura, D. (2000). Quantum Neural Networks. In: Kasabov, N. (eds) Future Directions for Intelligent Systems and Information Sciences. Studies in Fuzziness and Soft Computing, vol 45. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1856-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1856-7_11

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2470-4

  • Online ISBN: 978-3-7908-1856-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics