Skip to main content

Soft Computing at a Flotation Plant

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 71))

Abstract

Flotation is used in mineral processing industries for separation of grains of valuable minerals from those of side minerals (Laskowski and Woodburn 1998). In the continuous flow flotation cell (Fig. 1), air is pumped into a suspension of ore and water. The desired mineral tends to adhere to air bubbles and rises to the froth layer where the concentrate floats over the edge of the cell; the main part of other minerals remains in the slurry. The separation of minerals requires that the desired mineral is water-repellent: in zinc flotation, this can be reached by conditioning chemicals as copper sulphate CuSO4; xanthate is needed to reach lower surface tension, etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basilevsky, A. (1994): Statistical factor analysis and related methods. John Wiley & Sons, New York

    Book  Google Scholar 

  • Beucher, S. and Meyer, F. (1993): The morphological approach to segmentation: The watershed transformation. In: Dougherty, E.R. (ed.): Mathematical Morphology and Image Processing. Marcel Dekker, New York, pp. 433–481

    Google Scholar 

  • Cipriano, A., Guarini, M., Vidal, R., Soto, A., Sepúldeva, C., Mery, D., Briseno, H. (1998): A real time visual sensor for supervision of flotation cells. Mineral Engineering 11 (6), 489–499

    Article  Google Scholar 

  • Hyötyniemi, H., Ylinen, R. (1998): Modeling of visual froth data. In: Heidepriem, J. (ed.): Preprints of the IFAC Symposium on Automation in Mining, Mineral and Metal Processing. Elsevier Science, New York, pp. 309–314.

    Google Scholar 

  • Hyötyniemi, H., Hasu, V. (2000): Independent components of expertise. In: Hyötyniemi, H. (ed.): Proceedings of the Finnish Artificial Intelligence Conference (SteP 2000). Finnish Artificial Intelligence Society, Helsinki, vol. 3, pp. 37–44

    Google Scholar 

  • Hätönen, J. (1999): Image analysis in mineral flotation. M.Sc. Thesis, Helsinki University of Technology, Control Engineering Laboratory, Report 116

    Google Scholar 

  • Hätönen, J., Hyötyniemi, H., Bonifaci, G., Volpe, F., Serranti, S., Carlsson, L.-E. (1999): Using PCA in controller strategy design for a flotation process. In: Chen, H.F., Cheng, D.Z., Zhang, J.F. (ed.): Preprints the 14th IFAC World Congress. Elsevier Science, Oxford New York Tokyo, pp. 385–390

    Google Scholar 

  • Hätönen, J., Hyötyniemi, H., Miettunen, J., Carlsson, L.-E. (1999): Using image information and PLS for predicting mineral concentrations in the flotation froth. In: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials (IPMM’99), Hawaii, USA

    Google Scholar 

  • Laskowski, J. S., Woodburn, E. T. (eds.) (1998): Frothing in flotation II. Gordon and Breach Science Publishers

    Google Scholar 

  • Moolman, D. W., Aldrich, C., van Deventer, J. S. J., Bradshaw, D. B. (1996): The interpretation of flotation froth surfaces by using digital image analysis and neural networks. Chem. Eng. Sci. 50 (22), 3501–3513

    Google Scholar 

  • Moolman, D. W., Aldrich, C., van Deventer, J. S. J., Stange, W. W. (1995): The classification of froth structures in copper flotation by means of a neural net. Int. J. Mineral Processing 43 (3–4), 193–208

    Article  Google Scholar 

  • Niemi, A., Ylinen, R., Hyötyniemi, H. (1997): On the characterization of pulp and froth in cells of flotation plant. Int. J. Mineral Processing 45(3), 51, 51–66

    Article  Google Scholar 

  • Ylinen, R., Hasu, V., Hyötyniemi, H., Sipari P. (1999): control of flotation by machine vision. In; Proceedings of the Automation Days 1999. Finnish Society of Automation, Helsinki, pp. 459–464

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hyötyniemi, H., Ylinen, R., Miettunen, J. (2001). Soft Computing at a Flotation Plant. In: Leiviskä, K. (eds) Industrial Applications of Soft Computing. Studies in Fuzziness and Soft Computing, vol 71. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1822-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1822-2_9

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2488-9

  • Online ISBN: 978-3-7908-1822-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics