Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 76))

Abstract

This paper proposes an approach for the multivariate modelling of time series with neuro-fuzzy systems. The fuzzy rule model is based on adaptive B-splines which can approximate any given input-output data series of low dimension. To efficiently describe high-dimensional input data, statistical indices are extracted to feed the fuzzy controller. The original input space is transformed into an eigenspace. If a sequence of training data are sampled in a local context, a small number of eigenvectors which possess larger eigenvalues provide a good summary of all the original variables. Fuzzy controllers can be trained for mapping the input projection in the eigenspace to the outputs. Experiments of time series prediction validate the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. S. Albus. A new approach to manipulator control: The Cerebellar Model Articulation Controller (CMAC). Transactions of ASME, Journal of Dynamic Systems Measurement and Control, 97: 220–227, 1975.

    Article  Google Scholar 

  2. W. Böhm, G. Farin, and J. Kahmann. A survey of curve and surface methods in cagd. Computer Aided Geometric Design, 1: 1–60, 1984.

    Article  Google Scholar 

  3. G. E. P. Box and G. M. Jenkins. Time series analysis. Holden Day, San Francisco, 1970.

    Google Scholar 

  4. S. L. Chiu. Selecting input variables for fuzzy models. Journal of Intelligent and Fuzzy Systems, 4: 243–256, 1996.

    Google Scholar 

  5. J.-S. R. Jang. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on System, Man and Cybernetics, 23 (3): 665–685, 1993.

    Article  Google Scholar 

  6. J.-S. R. Jang, C.-T. Sun, and E. Mizutani. Neuro-Fuzzy and Soft Computing. Prentice Hall, 1997.

    Google Scholar 

  7. V. Lacrose and A. Tilti. Fusion and hierarchy can help fuzzy logic controller designers. In IEEE International Conference on Fuzzy Systems, Barcelona, 1997.

    Google Scholar 

  8. S. Lotvonen, S. Kivikunnas, and E. Juuso. Tuning of a fuzzy system with genetic algorithms and linguistic equations. In Proceedings of Fourth European Congress on Intelligent Techniques and Soft Computing, Aachen, 1997.

    Google Scholar 

  9. S. Mitaim and B. Kosko. What is the best shape of a fuzzy set in function approximation. In IEEE International Conference on Fuzzy Systems, pages 1237–1243, 1996.

    Google Scholar 

  10. E. Oja. Subspace methods of pattern recognition. Research Studies Press, Hertfordshire, 1983.

    Google Scholar 

  11. T. Takagi and M. Sugeno. Fuzzy identification of systems and its application to modelling and control. IEEE Transactions on System, Man and Cybernetics, SMC-15(1): 116–132, 1985.

    Google Scholar 

  12. L. A. Zadeh. Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems, 4 (2): 103–111, 1996.

    Article  Google Scholar 

  13. J. Zhang and A. Knoll. Constructing fuzzy controllers with B-spline models-principles and applications. International Journal of Intelligent Systems, 13 (2/3): 257–285, 1998.

    Article  Google Scholar 

  14. J. Zhang and A. Knoll. Designing fuzzy controllers by rapid learning Fuzzy Sets and Systems, 13 (2), 1998.

    Google Scholar 

  15. J. Zhang, A. Knoll, and I. Renners. Efficient learning of non-uniform B-splines for modelling and control. In International Concerence on Computational Inteligence for Modelling, Control and Automation, Viena, pages 282–287, Viena, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Physica-Verlag Heidelberg

About this chapter

Cite this chapter

Zhang, J., Knoll, A. (2001). Neuro-Fuzzy Modelling of Time Series. In: Ruan, D., Kacprzyk, J., Fedrizzi, M. (eds) Soft Computing for Risk Evaluation and Management. Studies in Fuzziness and Soft Computing, vol 76. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1814-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1814-7_9

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-00348-0

  • Online ISBN: 978-3-7908-1814-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics