Skip to main content

Unsupervised Learning and Self-Organization in Networks of Spiking Neurons

  • Chapter
Self-Organizing Neural Networks

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 78))

Abstract

One of the most prominent features of biological neural systems is that individual neurons communicate via short electrical pulses, the so-called action potentials or spikes. In this chapter we investigate possible mechanisms of unsupervised learning and self-organization in networks of spiking neurons. After giving a brief introduction to spiking neuron networks we describe a biologically plausible algorithm for these networks to find clusters in a high dimensional input space or a subspace of it. The algorithm is shown to work even in a dynamically changing environment. Furthermore, we study self-organizing maps of spiking neurons showing that networks of spiking neurons using temporal coding can achieve a topology preserving behavior quite similar to that of Kohonen’s self-organizing map. For these networks a mechanism of competitive computation is proposed that is based on action potential timing. Thus, the winner in a population of competing neurons can be determined locally and in generally faster than in approaches which use rate coding. The models and algorithms presented in this chapter establish further steps toward more realistic descriptions of unsupervised learning in biological neural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. F. Abbott and S. B. Nelson. Synaptic plasticity: taming the beast. Nature Neuroscience, 3 (Supp): 1178–1183, 2000.

    Article  Google Scholar 

  2. L. E. Abbott, J. A. Varela, K. Sen, and S. B. Nelson. Synaptic depression and gain control. Science, 275: 220–224, 1997.

    Article  Google Scholar 

  3. M. Abeles, H. Bergman, E. Margalit, and E. Vaadia. Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. Journal of Neurophysiology, 70 (4): 1629–1638, 1993.

    Google Scholar 

  4. M. A. Arbib, editor. The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, Mass., 1995.

    Google Scholar 

  5. G. Blasel and K. Obermayer. Putative strategies of scene segmentation in monkey visual cortex. Neural Networks, 7: 865–881, 1994.

    Article  Google Scholar 

  6. Y. Choe and R. Miikkulainen. Self-organization and segmentation in a laterally connected orientation map of spiking neurons. Neurocomputing, 21: 139–157, 1998.

    Article  MATH  Google Scholar 

  7. T. J. Gawne, T. Kjaer, and B. Richmond. Latency: Another potential code for feature binding in striate cortex. Journal of Neurophysiology, 76 (2): 1356–1360, 1996.

    Google Scholar 

  8. W. Gerstner. Spiking neurons. In W. Maass and C. M. Bishop, editors, Pulsed Neural Networks, pages 3–53. MIT Press, Cambridge, Mass., 1999.

    Google Scholar 

  9. W. Gerstner, R. Kempter, L. van Hemmen, and H. Wagner. A neuronal learning rule for sub-millisecond temporal coding. Nature, 383: 76–78, 1996.

    Article  Google Scholar 

  10. G. J. Goodhill and T. J. Sejnowski. A unifying objective function for topographic mappings. Neural Computation, 9: 1291–1303, 1997.

    Article  Google Scholar 

  11. S. Grossberg. Adaptive pattern classification and universal recording: II. Feedback, expectation, olfaction, illusions. Biological Cybernetics, 23: 187–202, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Haberly. Neuronal circuitry in olfactory cortex: Anatomy and functional implications. Chemical Senses, 10 (2): 219–238, 1985.

    Article  Google Scholar 

  13. P. Häfliger, M. Mahowald, and L. Watts. A spike based learning neuron in analog VLSI. In Advances in Neural Information Processing Systems 9, pages 692–698, MIT Press, Cambridge, Mass., 1997.

    Google Scholar 

  14. J. J. Hopfield. Pattern recognition computation using action potential timing for stimulus representation. Nature, 367: 33–36, 1995.

    Article  Google Scholar 

  15. D. Johnston and S. M. S. Wu. Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass., 1995.

    Google Scholar 

  16. C. Koch. Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, 1999.

    Google Scholar 

  17. C. Koch and I. Segev. Methods in Neural Modeling: From Ions to Networks. MIT Press, Cambridge, Mass., 1998.

    Google Scholar 

  18. T. Kohonen. Physiological interpretation of the self-organizing map algorithm. Neural Networks, 6: 895–905, 1993.

    Google Scholar 

  19. T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1995.

    Book  Google Scholar 

  20. B. Krekelberg and J. G. Taylor. Nitric oxide: What can it compute? Network: Computation in Neural Systems, 8: 1–16, 1997.

    Article  MATH  Google Scholar 

  21. T. Lehmann and R. Woodburn. Biologically-inspired on-chip learning in pulsed neural networks. Analog Integrated Circuits and Signal Processing, 18: 117–131, 1999.

    Article  Google Scholar 

  22. W. Maass. Fast sigmoidal networks via spiking neurons. Neural Computation, 9: 279–304, 1997.

    Article  MATH  Google Scholar 

  23. W. Maass. Networks of spiking neurons: The third generation of neural network models. Neural Networks, 10: 1659–1671, 1997.

    Article  Google Scholar 

  24. W. Maass. Computing with spiking neurons. In W. Maass and C. M. Bishop, editors, Pulsed Neural Networks, chapter 2, pages 55–85. MIT Press, Cambridge, Mass., 1999.

    Google Scholar 

  25. W. Maass and C. M. Bishop, editors. Pulsed Neural Networks. MIT Press, Cambridge, Mass., 1999.

    Google Scholar 

  26. H. Markram, Y. Wang, and M. Tsodyks. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Nat. Acad. Sci. USA, 95: 5323–8, 1998.

    Article  Google Scholar 

  27. J. O’Keefe and M. L. Reece. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3 (3): 3317–30, 1993.

    Google Scholar 

  28. E Rieke, D. Warland, W. Bialek, and R. de Ruyter van Steveninck. SPIKES: Exploring the Neural Code. MIT Press, Cambridge, Mass., 1999.

    Google Scholar 

  29. H. Ritter. Self-organizing feature maps: Kohonen maps. In M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 846–851. MIT Press, Cambridge, Mass., 1995.

    Google Scholar 

  30. H. Ritter, T. Martinetz, and K. Schulten. Neural Computation and Self-Organizing Maps. Addison-Wesley, Reading, Mass., 1992.

    MATH  Google Scholar 

  31. R. Ritz and T. J. Sejnowski. Synchronous oscillatory activity in sensory systems: new vistas on mechanisms. Current Opinion in Neurobiology, 7: 536–546, 1997.

    Article  Google Scholar 

  32. B. Ruf. Computing and Learning with Spiking Neurons-Theory and Simulations. PhD thesis, Institute for Theoretical Computer Science, Technische Universität Graz, Austria, 1998.

    Google Scholar 

  33. I. Segev. Dendritic processing. In M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 282–289. MIT Press, Cambridge, Mass., 1995.

    Google Scholar 

  34. J. Sirosh and R. Miikkulainen. Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation, 9: 577–594, 1997.

    Article  Google Scholar 

  35. K.-Y. Siu, V. Roychowdhury, and T. Kailath. Discrete Neural Computation: A Theoretical Foundation. Information and System Sciences Series. Prentice-Hall, Englewood Cliffs, NJ, 1995.

    MATH  Google Scholar 

  36. D. W. Tank and J. J. Hopfield. Neural computation by concentrating information in time. Proc. Nat. Acad. Sci. USA, 84: 1896–1900, Apr. 1987.

    Article  MathSciNet  Google Scholar 

  37. S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system. Nature, 381: 520–522, 1996.

    Article  Google Scholar 

  38. J. A. Varela, K. Sen, J. Gibson, J. Fost, L. F. Abbott, and S. B. Nelson. A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J. Neurosci, 17: 220–4, 1997.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Natschläger, T., Ruf, B., Schmitt, M. (2002). Unsupervised Learning and Self-Organization in Networks of Spiking Neurons. In: Seiffert, U., Jain, L.C. (eds) Self-Organizing Neural Networks. Studies in Fuzziness and Soft Computing, vol 78. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1810-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1810-9_3

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-00343-5

  • Online ISBN: 978-3-7908-1810-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics