Skip to main content

Traditional techniques to prove some limit theorems for fuzzy random variables

  • Chapter
Statistical Modeling, Analysis and Management of Fuzzy Data

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 87))

Abstract

In the last years, some limit theorems for fuzzy random variables have been proven by means of different techniques developed for this purpose. In this work we deal with the cadlag representation of a kind of fuzzy sets to show that these limit results can be also proved by applying well-known techniques in Probability Theory (specifically, the ones which make valid the analogous theorems for D[0, 1]-valued random elements). In this context, we will study a strong law of large numbers (whose proof will suggest a characterization of the uniform convergence) and a strong law of the iterated logarithm. Furthermore, we will check the relationships between these techniques and the ones used by Molchanov to prove a SLLN for the same random elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artstein, Z. and Hansen, J.C. (1985). Convexification in limit laws of random sets in Banach spaces. Ann. Probab. 13, 307 - 309.

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin, J.P. (1999). Mutational and Morphological Analysis. Birkhäuser, Boston.

    Book  MATH  Google Scholar 

  3. Aumann, R.J. (1965). Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1 - 12.

    Article  MathSciNet  MATH  Google Scholar 

  4. Billingsley, P. (1968). Convergence of Probability Measures. John Wiley Sons, New York.

    MATH  Google Scholar 

  5. Colubi, A., López-Díaz, M., Domínguez-Menchero, J.S. and Gil, M.A. (1997). A generalized strong law of large numbers. Technical Report. Universidad de Oviedo.

    Google Scholar 

  6. Colubi, A., López-Díaz, M., Domínguez-Menchero, J.S. and Gil, M.A. (1999). A generalized strong law of large numbers. Probab. Theory Relat. Fields 114, 401 - 417.

    Article  MATH  Google Scholar 

  7. Colubi, A., Domínguez-Menchero, J.S., López-Díaz, M. and Ralescu D. A. (2001). A DE[0, 1] representation of random upper semicontinuous functions, (submitted for publication)

    Google Scholar 

  8. Colubi, A., Domínguez-Menchero, J.S., López-Díaz, M. and Körner R. (2001). A method to derive strong laws of large numbers for random upper semicontinuous functions, Statist. Probab. Let. (accepted for publication).

    Google Scholar 

  9. Daffer, P.Z. and Taylor, R.L. (1979). Laws of large numbers for D[0, 1]. Ann. Prob. 7, 85 - 95.

    Article  MathSciNet  MATH  Google Scholar 

  10. Daffer, P. and Schiopu-Kratina, I. (1988). L’tightness and the law of large numbers in D(IR). Can. J. Stat. 16, 393 - 397.

    Article  MathSciNet  MATH  Google Scholar 

  11. Debreu, G. (1967). Integration of correspondences. Proc. Fifth Berkeley Symp. Math. Statist. Prob. 1965/66 2, Part 1. Univ. of California Press, Berkeley, 351 - 372.

    Google Scholar 

  12. Ethier, S.N. and Kurtz, T.G. (1986). Markov Processes. Characterizations and Convergence.John Wiley Sons.

    Google Scholar 

  13. Giné, E., Hahn, M. and Zinn, J. (1983). Limit theorems for random sets: an application of probability in Banach space results. Probability in Banach spaces IV. Berlin, Springer-Verlag 990, 112 - 135.

    Google Scholar 

  14. Hiai, F. (1985). Convergence of conditional expectations and strong laws of large numbers for multivalued random variables. Trans. Amer. Math. Soc. 291, 613 - 627.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoffman-Jorgensen, J. (1985a). The law of large numbers for non-measurable and non-separable random elements. Asterisque. 131 299 - 356.

    Google Scholar 

  16. Klement, E.P., Puri M.L. and Ralescu, D.A. (1986). Limit theorems for fuzzy random variables. Proc. R. Soc, Lond. A 407, 171 - 182.

    MathSciNet  MATH  Google Scholar 

  17. López-Díaz, M. and Gil, M.A. (1998a). Approximating integrably bounded fuzzy random variables in terms of the "generalized" Hausdorff metric. Inform. Sci. 104, 279 - 291.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lyashenko, N.N. (1982). Limit theorems for sums of independent compact random subsets of euclidean space. J. Soviet. Math. 20, 2187 - 2196.

    Article  MATH  Google Scholar 

  19. Molchanov, I. (1999). On strong laws of large numbers for random upper semi-continuous functions. J. Math. Anal. Appl. 235, 349 - 355.

    Article  MathSciNet  MATH  Google Scholar 

  20. Proske, F. (1997). Grenzwertsätze far Fuzzy-Zufallsvariablen unter dem Gesichspunkt der Wahrscheinlichkeitstheorie ouf inseparablen semigruppen. PhD Thesis. Univ. Ulm.

    Google Scholar 

  21. Puri, M.L. and Ralescu, D.A. (1981). Différentielle d'une fonction floue. C.R. Acad. Sci. Paris Sér. A 293, 237 - 239.

    MathSciNet  MATH  Google Scholar 

  22. Puri, M.L. and Ralescu, D. (1986). Fuzzy random variables. J. Math. Anal. Appl. 114, 409 - 422.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Colubi, A. (2002). Traditional techniques to prove some limit theorems for fuzzy random variables. In: Bertoluzza, C., Gil, MÁ., Ralescu, D.A. (eds) Statistical Modeling, Analysis and Management of Fuzzy Data. Studies in Fuzziness and Soft Computing, vol 87. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1800-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1800-0_4

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2501-5

  • Online ISBN: 978-3-7908-1800-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics