Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 96))

  • 253 Accesses

Abstract

This chapter examines the use of complexity analysis, approximate entropy, wavelet transforms, artificial neural networks, fuzzy logic, and neuro-fuzzy method (adaptive network-based fuzzy inference systems) to determine the depth of anesthesia (DOA) of a patient by analyzing mid-latency auditory evoked potentials (MLAEP) and electroencephalograms (EEG). Comparisons are made of the success and computational efficiency of each technique using the data of experimental dogs with different anesthetic modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Domino, K.B., Posner, K.L., Caplan, R.A., and Cheney, F.W. (1999), “Awareness during anesthesia,” Anesthesiology, vol. 90, pp. 1053–1061.

    Article  PubMed  CAS  Google Scholar 

  2. Linkens, D.A. (1992), “Adaptive and intelligent control in anesthesia,” IEEE Control Systems, pp. 6–11.

    Google Scholar 

  3. Kwok, K.E., Shah, S.L., Clanachan, A.S., and Finegan, B.A. (1995), “Evaluation of a long-range adaptive predictive controller for computerized drug delivery systems,” IEEE Trans. Biomed. Eng., vol. 42, pp. 79–86.

    Article  PubMed  CAS  Google Scholar 

  4. Wada, D.R. and Ward, D.S. (1995), “Open loop control of multiple drug effects in anesthesia,” IEEE Trans. Biomed. Eng., vol. 42, pp. 666–677.

    Article  PubMed  CAS  Google Scholar 

  5. Valcke, C.P. and Chizeck, H.J. (1997), “Closed-loop drug infusion for control of heart-rate trajectory in phamacological stress tests,” IEEE Trans. Biomed. Eng., vol. 44, pp. 185–195.

    Article  PubMed  CAS  Google Scholar 

  6. Sugeno, M. and Kang G.T. (1988), “Structure identification of fuzzy model,” Fuzzy Sets and Systems, vol. 28, pp. 15–33.

    Article  Google Scholar 

  7. Oshita, S., Nakakimura, K., and Sakabe, T. (1994), “Hypertension control during anesthesia: fuzzy logic regulation of nicardipine infusion,” IEEE Eng Med and Bio Mag, vol. 13, no. 5, pp. 667–670.

    Article  Google Scholar 

  8. Hao, Y. and Sheppard, L.C. (1994), “Regulation mean arterial pressure in postsurgical cardiac patients: a fuzzy logic system to control administration of sodium nitroprusside,” IEEE Eng Med and Bio Mag, vol. 13, no. 5, pp. 671–677.

    Article  Google Scholar 

  9. Guignard, B., Menigaux, C., Dupont, X., and Chauvin, M. (1998), “Fuzzy logic closed loop system for propofol administration using bispectral index and hemodynamics,” Anesthesiology, vol. 89 (3A), p. 1218.

    Article  Google Scholar 

  10. Huang, J.W., Lu, Y.-Y., Nayak, A., and Roy, R.J. (1999), “Depth of anesthesia estimation and control,” IEEE Trans. Biomed. Eng., vol. 46, no. 1, pp. 71–81.

    Article  PubMed  CAS  Google Scholar 

  11. Huang, J.W. and Roy, R.J. (1998), “Multiple-drug hemodynamic control using fuzzy decision theory,” IEEE Trans. Biomed. Eng., vol. 45, no. 2, pp. 213–228.

    Article  PubMed  CAS  Google Scholar 

  12. Held, C.M., and Roy, R.J. (1995), “Multiple drug hemodynamic control by means of a supervisory-fuzzy rule-based adaptive control system: validation on a model,” IEEE Trans. Biomed. Eng., vol. 42, no. 4, pp. 371–385.

    Article  PubMed  CAS  Google Scholar 

  13. Huang, J.W., Held, C.M., and Roy, R.J. (1999), “Hemodynamic management with multiple drugs using fuzzy logic,” in Teodorescu, H.-N., Kandel, A., and Jain, L.C. (Eds.), Fuzzy and Neuro-Fuzzy Systems in Medicine, CRC Press (Boca Raton, London, New York, and Washington DC), chapter 11, pp. 319–340.

    Google Scholar 

  14. Nayak, A. and Roy, R.J. (1998), “Anesthesia control using midlatency auditory evoked potentials,” IEEE Trans. Biomed. Eng., vol. 45, no. 4, pp. 409–421.

    Article  PubMed  CAS  Google Scholar 

  15. Gibbs, G.A., Gibbs, E.L., and Lennox, W.G. (1937), “Effect on the electro-encephalogram of certain drugs which influence nervous activity,” Arch. Int. Med., vol. 60, pp. 154–166.

    Article  Google Scholar 

  16. Haykin, S. (1994), Neural Networks: a Comprehensive Foundation, New York: Macmillan College Publishing Company.

    Google Scholar 

  17. Mehrotra, K.G., Mohan, C.K., and Ranka, S. (1991), “Bounds on the number of samples needed for neural learning,” IEEE Trans. on Neural Networks, vol. 2, pp. 548–558.

    Article  CAS  Google Scholar 

  18. Mirchandani, G. and Cao, W. (1989), “On hidden nodes for neural nets,” IEEE Trans. on Circuits and Systems, vol. 36, pp. 661–664.

    Article  Google Scholar 

  19. Lin, C.-T. and Lee, C.S.G. (1991), “Neural-network-based fuzzy logic control and decision system,” IEEE Trans. Comp., vol. 40, no. 12, pp. 1320–1336.

    Article  Google Scholar 

  20. Jang, J.-S.R. (1993), “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. On Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665–684.

    Article  Google Scholar 

  21. Kasabov, N.K. (1996), “Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems,” Fuzzy Sets and Systems, vol. 82, pp. 135–149.

    Article  Google Scholar 

  22. Goldmann, L. (1988), “Information processing under general anaesthesia: a review,” I R. Soc. Med., vol. 81, pp. 224–227.

    CAS  Google Scholar 

  23. Daubechie, I. (1990), “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Info. Theory, vol. 36, pp. 961–1005.

    Article  Google Scholar 

  24. Daubechie, I. (1988), “Orthonormal bases of compactly supported wavelets,” Comm. on Pure and Appl. Math., vol. 41, pp. 909–996.

    Article  Google Scholar 

  25. Klecka, W.R. (1980), Discriminant Analysis, London, Sage Publications.

    Google Scholar 

  26. Nayak, A., Roy, R.J., and Sharma, A. (1994), “Time-frequency spectral representation of the EEG as an aid in the detection of depth of anesthesia,” Annals of Biomed. Eng., vol. 22, pp. 501–513.

    Article  CAS  Google Scholar 

  27. Katoh, T., Suzuki, A., and Ikeda, K. (1998), “Electro-encephalographic derivatives as a tool for predicting the depth of sedation and anesthesia induced by sevoflurane,” Anesthesiology, vol. 88, pp. 842–650.

    Article  Google Scholar 

  28. Olofsen, E. and Dahan, A. (1999), “The dynamic relationship between end-tidal sevoflurane and isoflurane concentrations and bispectral index and spectral edge frequency of the electroencephalogram,” Anesthesiology, vol. 90, pp. 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  29. Koch, C. and Laurent, G. (1999), “Complexity and the nervous system,” Science, vol. 284, pp. 96–98.

    Article  PubMed  CAS  Google Scholar 

  30. Micheloyannis, S., Flitzanis, N., Papanikolaou, E., Bourkas, M., and Terzakis, D. (1998), “Usefulness of non-linear EEG analysis,” Acta Neurol. Scand., vol. 97, pp. 13–19.

    Article  PubMed  CAS  Google Scholar 

  31. Kaspar, F. and Schuster, H.G. (1987), “Easily calculable measure for the complexity of spatiotemporal patterns,” Phys Rev A, vol. 36, pp. 842–848.

    Article  PubMed  Google Scholar 

  32. Pincus, S.M., Gladstone, I.M., and Ehrenkranz, R.A. (1991), “A regularity statistic for medical data analysis,” J Clin Monit, vol. 7, pp. 335–345.

    Article  PubMed  CAS  Google Scholar 

  33. Lempel, D. and Ziv, J. (1976), “On the complexity of fmite sequences,” IEEE Trans. on Info. Theory, vol. 22, pp 75–81.

    Article  Google Scholar 

  34. Zhang, X.-S. and Roy, R.J. (1999), “Predicting movement during anesthesia by complexity analysis of the EEG,” Med. and Biol. Eng. and Comp., vol. 37, pp. 327–334.

    Article  CAS  Google Scholar 

  35. Rezek, I.A. and Roberts, S.J. (1998), “Stochastic complexity measures for physiological signal analysis,” IEEE Trans. Biomed. Eng., vol. 45, no. 9, pp. 1186–1191.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang, X.-S. and Roy, R.J. (2000), “Fuzzy knowledge model for estimating the depth of anesthesia,” Proc. of Int. Conf of Artif. Neural Networks in Eng. (ANNIE) 2000, St. Louis, MI.

    Google Scholar 

  37. Fathi-Torbaghan, M. and Hildebrand, L. (1999), “Complex system analysis using CI methods,” Proc. of the SPIE, vol. 3722, pp. 330341.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, J.W., Zhang, XS., Roy, R.J. (2002). Monitoring Depth of Anesthesia. In: Schmitt, M., Teodorescu, HN., Jain, A., Jain, A., Jain, S., Jain, L.C. (eds) Computational Intelligence Processing in Medical Diagnosis. Studies in Fuzziness and Soft Computing, vol 96. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1788-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1788-1_13

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2509-1

  • Online ISBN: 978-3-7908-1788-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics