Skip to main content

Continuous WOWA Operators with Application to Defuzzification

  • Chapter
Aggregation Operators

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 97))

Abstract

The basic operations for combining real values are the weighted mean (WM) and the Ordered Weighted Averaging (OWA) operator. The weighted mean allows the system to compute an aggregate value from the ones coming from several sources, taking into account the reliability of each information source. Alternatively, the OWA operator allows the user to weight the values supplied in relation to their alternative ordering. The Weighted OWA operator (WOWA) allows the user to consider both aspects using two sets of weights. In this chapter we describe an extension of the WOWA operator to the continuous case after arguing its convenience. Then, we analyze the use of this operator for defuzzification.

This is a revised and expanded version of two previous papers of the same authors: “Averaging continuous distributions with the WOWA operator” in Proc. of EFDAN’97, Dortmund (Germany) pp. 10–19.; and “On defuzzification with continuous WOWA operators” in Proc. of ESTYLF’97, Tarragona (Spain), pp. 227–232.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abidi M.A. (1992) Fusion of Multi-dimensional Data Using Regulation, in M.A. Abidi, R.C. Gonzalez (eds.), Data Fusion In Robotics and Machine Intelligence, Academic Press, U.K., pp. 415–455.

    Google Scholar 

  2. Aczél J. (1984) On weighted synthesis of judgements, Aequationes Math., 27, 288–307.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alsina C., Mayor G., Tomas M.S., Torrens J. (1993) A characterization of a class of aggregation functions, Fuzzy Sets and Systems, 53, pp. 33–38.

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvo T., Kolesarova A., Komornikova M., Mesiar R. (2001) Aggregation operators: properties, classes and construction methods. Chapter in this monograph.

    Google Scholar 

  5. Chen J.E., Otto K.N. (1995) Constructing membership functions using interpolation and measurement theory, Fuzzy Sets and Systems, 73: 3, pp. 313–327.

    Article  MathSciNet  MATH  Google Scholar 

  6. Detyniecki M., Yager R. R. (2000) Ranking fuzzy numbers using a-weighted valuations, Int. J. of Unc., Fuzziness and Knowledge-Based Systems, 8: 5 573591.

    MathSciNet  Google Scholar 

  7. Driankov D., Hellendoorn H., Reifrank M. (1993) An introduction to Fuzzy Control. Springer Verlag.

    Google Scholar 

  8. Dubois D., Fargier H., Prade H. (1996) Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty. Applied Intelligence, 6, pp. 287–309.

    Article  Google Scholar 

  9. Filev D., Yager R.R. (1991) A generalized defuzzification method under BADD distributions, Intl. Journal of Intelligent Systems 6, pp. 687–697.

    Article  MATH  Google Scholar 

  10. Fodor J., Marichal J L, Roubens M. (1995) Characterization of Ordered Weighted Averaging Operators, IEEE Trans. of Fuzzy Systems, 3:2, pp. 236240.

    Google Scholar 

  11. Grabisch M. (1995) Fuzzy integral in multicriteria decision making, Fuzzy Sets and Systems, 69, pp. 279–298.

    Article  MathSciNet  MATH  Google Scholar 

  12. Genest C., Zidek J.V. (1986) Combining Probability Distributions: A Critique and An Annotated Bibliography, Statistical Science, 1: 1, pp. 114–148.

    Article  MathSciNet  Google Scholar 

  13. Klir G.J., Yuan B. (1995) Fuzzy Sets and Fuzzy Logic, Prentice-Hall PTR.

    Google Scholar 

  14. Lopez B., Alvarez S., Millân P., Puig D., Riano D., Torra V. (1994) Multistage vision system for road lane markings and obstacle detection, Proceedings of Euriscon ‘84, Malaga, pp. 489–497.

    Google Scholar 

  15. Luo R.C., Kay M.G. (1992) Data Fusion and Sensor Integration: State-of-the-art 1990s, in M.A. Abidi, R.C. Gonzalez (eds.), Data Fusion In Robotics and Machine Intelligence, Academic Press, U.K., pp. 7–135.

    Google Scholar 

  16. Nelsen R.B. (1999) An Introduction to Copulas, Lecture Notes in Statistics 139, Springer, New York, 1999.

    Google Scholar 

  17. Nishiwaki Y., Preyssl C., Schmid S. (1994) Decision Making under uncertainty: Application of fuzzy logic to risk assessment abd nabagement of space systems, Proceedings of the Third International Conference on Fuzzy Logic, Neural Networks and Soft Computing, lizuka (Japan), pp. 263–264.

    Google Scholar 

  18. Rondeau L., Ruedas R., Levrat L., Lamotte L. (1997) A defuzzification method respecting the fuzzification, Fuzzy Sets and Systems, 86, pp. 311–320.

    Article  MathSciNet  MATH  Google Scholar 

  19. Sandri S.A., Dubois D, Kalfsbeek H. (1995) Elicitation, Assesment, and Pooling of Expert Judgements Using Possibility Theory, IEEE Trans. on Fuzzy Systems, 3: 3, pp. 313–335.

    Article  Google Scholar 

  20. Slany W. (1996) Scheduling as a fuzzy multiple criteria optimization problem, Fuzzy Sets and Systems, 78, pp. 197–222.

    Article  MathSciNet  Google Scholar 

  21. Torra V. (1996) Weighted OWA operators for synthesis of information, Proc. of Fifth IEEE Int. Conference on Fuzzy Systems (IEEE-FUZZ’96), pp. 966–971, New Orleans, USA.

    Google Scholar 

  22. Torra V. (1997) The Weighted OWA operator, Int. J. of Intel. Systems, 12, pp. 153–166.

    Article  MATH  Google Scholar 

  23. Torra V. (1998) On some relationships between the WOWA operator and the Choquet integral, Proceedings of the Seventh Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’98), 818–824, Paris, France.

    Google Scholar 

  24. Torra, V. (2000) The WOWA operator and the interpolation function W*: Chen and Otto’s interpolation method revisited, Fuzzy Sets and Systems, 113: 3, pp. 389–396.

    Article  MathSciNet  Google Scholar 

  25. Valente de Oliveira J. (1995) A set-theoretical defuzzification method. Fuzzy sets and systems, 76, pp. 63–71.

    Article  MathSciNet  Google Scholar 

  26. Yager R.R. (1988) On ordered weighted averaging aggregation operators in multi-criteria decision making, IEEE Trans. on SMC, 18, pp. 183–190.

    MathSciNet  MATH  Google Scholar 

  27. Yager R.R. (1993) Families of OWA operators, Fuzzy Sets and Systems, 59, pp. 125–148.

    Article  MathSciNet  MATH  Google Scholar 

  28. Yager R.R. (1996) Quantifier Guided Aggregation Using OWA operators, Int. J. of Intel. Systems, 11, pp. 49–73.

    Article  Google Scholar 

  29. Yager R.R. (1996) Knowledge-based defuzzification. Fuzzy Sets and Systems, 80, pp. 177–185

    Article  MathSciNet  Google Scholar 

  30. Yager R.R., Filev D.P. (1993) On the issue of defuzzification and selection based on a fuzzy set. Fuzzy Sets and Systems, 55, pp. 255–271.

    Article  MathSciNet  MATH  Google Scholar 

  31. Yager R.R., Filev D.P. (1994) Essentials of fuzzy modeling and control, John Wiley.

    Google Scholar 

  32. Zadeh L.A. (1978) PRUF–A meaning representation language for natural language, Intl. Journal of Man-Machine Studies, 10, pp. 395–460.

    Article  MathSciNet  MATH  Google Scholar 

  33. Zimmermann H J. (1991) Fuzzy Set Theory - and Its Applications, Kluwer, Dordrecht, 2nd revised edition.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Physica-Verlag Heidelberg

About this chapter

Cite this chapter

Torra, V., Godo, L. (2002). Continuous WOWA Operators with Application to Defuzzification. In: Calvo, T., Mayor, G., Mesiar, R. (eds) Aggregation Operators. Studies in Fuzziness and Soft Computing, vol 97. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1787-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1787-4_4

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-00319-0

  • Online ISBN: 978-3-7908-1787-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics